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Abstract. We show that the decision problem of recognising whether a trian-

gulated 3-manifold admits a Seifert fibered structure with non-empty boundary

is in NP. We also show that the problem of producing Seifert data for a triangu-
lation of such a manifold is in the complexity class FNP. We do this by proving

that in any triangulation of a Seifert fibered space with boundary there is both

a fundamental horizontal surface of small degree and a complete collection of
normal vertical annuli whose total weight is bounded by an exponential in the

square of the triangulation size.
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1. Introduction

A basic question in low-dimensional topology is 3-manifold homeomorphism:
given two 3-manifolds, decide whether they are homeomorphic. This recognition
problem is decidable as a consequence of Perelman’s proof of Thurston’s geometri-
sation conjecture (several proofs have been given of this; see [29] for an overview).
This is in contrast to the n-manifold case for n ≥ 4, where the problem has been
shown to be undecidable [19].

The complexity of this problem, however, is not very well understood. Kuperberg
showed that there is an algorithm for 3-manifold homeomorphism which has
running time bounded by a bounded tower of exponentials – that is, that it is at
most of the order of
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2 RECOGNITION OF SEIFERT FIBERED SPACES

for some fixed height [15] – where the height is not known except among hyperbolic
manifolds [30]. It is also known the problem is at least as hard as finite graph
isomorphism [16]. The natural question that follow is whether the problem lies in
NP. To prove this, we might first hope to prove that recognising hyperbolic and
Seifert fibered manifolds is in NP.

This paper concerns itself with the Seifert fibered case when the boundary is non-
empty. We consider two algorithmic problems. First, the Seifert fibered space
with boundary recognition decision problem: given a triangulation of some
3-manifold, decide whether it admits a Seifert fibered structure and has non-empty
boundary.

Theorem 1.1. The problem Seifert fibered space with boundary recog-
nition is in NP.

Second, the naming Seifert fibered with boundary problem: given a tri-
angulation of a Seifert fibered 3-manifold with non-empty boundary, output a valid
set of Seifert data for it.

Theorem 1.2. The problem naming Seifert fibered with boundary is in
FNP.

Remark 1.3. The complement of the torus knot T (p, q) is the Seifert fibered space
[D2,−s/q,−r/p] where r/s is a fraction such that ps− qr = 1. Baldwin and Sivek
showed previously that, given a knot complement, deciding if it is the complement
of a torus knot is in NP [2]. We can strengthen this to the 3-manifold setting
by certifying that the given 3-manifold is an appropriate Seifert fibered space and
giving p/q and r/s in addition to the Seifert data.

The main piece of technical machinery we develop is that of split handle struc-
tures, which are defined in Section 4 and are essential for the results in Section 5.
They arise from cutting handle structures along normal surfaces, then requiring that
normal surfaces in the resulting manifold are disjoint from the cut-open boundary
(the forbidden region). We extend the usual normal surface theory to this setting
in Appendix A, culminating in Proposition A.16. We use this in Section 4.2 to
give some bounds on collections of “relatively” fundamental surfaces. This work is
based on ideas used by King [14, §3.2-3] and Lackenby [17, §12.2], among others,
which have not been previously rigorously generalised. Appendix A largely follows
ideas from standard normal surface theory as described by Matveev [21, §4]. Split
handle structures generalise handle structures and allow us to effectively study col-
lections of disjoint normal surfaces with boundary, as seen in the following result. A
normal surface in a split handle structure is duplicate (see Definition 4.7) if two of
its components are normally isotopic or if one is isotopic into the forbidden region.

Definition 1.4. The size of a normal surface F , s(F ), is the total number of
elementary discs in F .

Corollary 4.20. There exists a constant cS, which we can take to be 1010
30

, such
that the following holds. Let M be a manifold with a subtetrahedral split handle
structure H. Let {Σi} be a collection of n disjoint normal surfaces in M such that,
if we set H0 := H and Hi := Hi−1\\Σi, then Σi+1 is a non-duplicate fundamental
normal surface in Hi. Then there is a normal surface representative of the collection

in H whose size is at most c
|H|2
S .
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The main challenge is to prove that recognition of circle bundles over surfaces
with boundary is in NP. This is as, by previous work of the author [11], all singu-
lar fibres other than those of multiplicity two can be made simplicial in the 82nd

barycentric subdivision of any triangulation T of M , so we can tackle them by
drilling them out and then comparing the slope of a meridian of the singular fibre
to coordinates on the remaining manifold.

We show in Section 3 that there is a fundamental horizontal surface of minimal
degree in almost all Seifert fibered spaces with non-empty boundary. We set up
normal surface theory in split handle structures in Section 4. We then use this in
Section 5 to show that there is a collection of normal annuli in M which we can
usually take to be vertical and which are of at most exponential weight in |T |2,
that cut M into a collection of solid tori. We use these results to prove in Section 6
that recognising circle bundles over surfaces with boundary is in NP and giving
the surface is in FNP. In the first part of Section 7 we extend to the case when M
has singular fibres of multiplicity two, and then can use the barycentric subdivision
approach described above for the general case.

The recognition problem was previously known to be in NP for the following
classes of 3-manifolds: the 3-sphere [28], the solid torus, the 3-ball, S1 × S2 and
RP 3 [10], Σ× I and Σ×∼ I where Σ is a surface [6], and elliptic manifolds [18].

I thank Saul Schleimer for pointing out the connection with torus knot recogni-
tion.

2. Background and conventions

All 3-manifolds in this paper are compact and orientable.

Convention 2.1. We take the definition of a handle structure to require the fol-
lowing:

(1) each k-handle, with product structure Dk×D3−k, intersects the handles of
lower index in exactly ∂Dk×D3−k, and is disjoint from the other k-handles;

(2) 1-handles and 2-handles intersect in a manner compatible with their respec-
tive product structures; that is, a 1-handle D1×D2 intersects each 2-handle
D2 × D1 in segments of the form D1 × γ in the 1-handle and λ × D1 in
the 2-handle, where γ and λ are collections of arcs in ∂D2 in the respective
product structures.

Definition 2.2. The boundary graph of a 0-handle H is the graph embedded in
∂H ∼= S2 whose 0-cells are the intersections with the 1-handles and whose 1-cells
are the intersections with the 2-handles.

Definition 2.3. Let T be a triangulation (or cell structure) of a 3-manifold M .
The dual handle structure H for M is formed by taking one (3− k)-handle for each
k-simplex (or cell) of T that is not contained in the boundary and gluing them in
the corresponding way.

Definition 2.4. A handle structure is subtetrahedral if its boundary graph is a
subgraph of the complete graph on four vertices; that is, of the boundary graph
of the 0-handle that is dual to a tetrahedron disjoint from the boundary of a 3-
manifold.

Lemma 2.5. The dual handle structure to a triangulation of a 3-manifold (possibly
with boundary) is subtetrahedral.
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3. Existence of a minimal degree fundamental horizontal surface

Let M be a Seifert fibered space whose boundary is non-empty, equipped with a
triangulation T . We will show that, so long as M is not on a short list of exceptions,
there is a fundamental horizontal surface in M whose induced covering of the base
orbifold of the Seifert fibration is of minimal degree. To do this we use normal
surface theory, which was originally developed by Haken [5]. For an exposition of
this theory see §3 and §4 of [21]. A normal surface F in T is minimal if it minimises
the number of intersections with the 1-skeleton of T within its isotopy class.

Theorem 3.1 (Theorem 6.5 [12]). Let F be an orientable, incompressible and ∂-
incompressible connected minimal normal surface in an orientable, irreducible and
∂-irreducible manifold M with a triangulation T . Suppose that nF = G1 +G2 for
some n. Then G1 and G2 are incompressible and ∂-incompressible, and neither has
any components of positive Euler characteristic.

Jaco and Tollefson’s version of this result does not mention the sphere or RP 2

exclusion. However, in Lemma 6.6 of [12] they show that under the same assump-
tions as in Theorem 3.1, G1 ∪ G2 contains no disc patches, so neither G1 nor G2

can be a sphere or RP 2.
In Matveev’s book, he gives a variant of this result when F is nonorientable.

Theorem 3.2 (Theorem 4.1.36 [21]). Let F be an incompressible, ∂-incompressible,
minimal connected normal surface F in an orientable, irreducible, ∂-irreducible
manifold M with triangulation T , such that F = G1 + G2. Then G1 and G2

are incompressible and ∂-incompressible, and have no components of positive Euler
characteristic.

To produce the desired fundamental surface we will use these theorems and the
fact that incompressible surfaces in Seifert fibered spaces are, as one can see from
the next few results, very well understood.

Proposition 3.3 ([23, 25]). An incompressible surface in T 2× I is isotopic to one
of the following:

(1) a trivial sphere or disc;
(2) an annulus γ × I;
(3) a ∂-parallel annulus or torus;
(4) a nonorientable surface F , which is ∂-compressible and uniquely determined

by two different slopes p0
q0

= F ∩ (T 2 × 0) and p1
q1

= F ∩ (T 2 × 1) where the

curves representing these slopes intersect an even number of times.

In the last case, F has non-orientable genus equal to the length of the minimal
sequence of curves in the torus (γ1, . . . , γn) from p0

q0
to p1

q1
where γi and γi+1 have

a geometric intersection number of two.

Proposition 3.4 ([23, 24]). The incompressible, non-∂-parallel, non-S2 surfaces
up to isotopy in a solid torus are classified by their intersections with the boundary,
which are as single curves of slopes p

q where q is even (that is, the slopes intersect-

ing a meridian curve an even number of times). Any such surface with non-zero
genus is non-orientable and ∂-compressible. Incompressible ∂-parallel surfaces are
precisely the annuli which are unions of fibres in fibrations of the solid torus as an
S1-bundle, as well as ∂-parallel discs.
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Definition 3.5. Let M be a Seifert fibered space and let T be a collection of one
solid torus neighbourhood of each singular fibre such that T is a union of fibres. A
surface in a Seifert fibered space is pseudo-vertical if it is isotopic to a surface that
is a union of fibres in M − T and is incompressible in each solid torus component
of T .

A vertical surface (that is, a union of regular fibres of M) is also pseudo-vertical
as we can isotope it to be disjoint from T .

Lemma 3.6. Let M be an irreducible Seifert fibered space with non-empty bound-
ary, and with (possibly empty) boundary pattern Γ consisting of a collection of ver-
tical fibres. If S is an incompressible, ∂-incompressible surface in M disjoint from
the boundary pattern then S is isotopic to a horizontal or pseudo-vertical surface,
or is a ∂-parallel disc or a trivial sphere.

This result is a modification of the standard proof in the case when S is orientable
(see [8, Proposition 1.11] or [20, Proposition 10.4.9]) and Mijatović’s result in the
case where there are no singular fibres [22, Proposition 2.6]). If M is closed then S
may additionally be pseudo-horizontal ; this case is discussed in [4, Theorem 2.5].

Proof. Suppose that S is not a ∂-parallel disc or a trivial sphere. If M is the solid
torus, the result follows from Proposition 3.4, noting that S may be ∂-parallel if
it is parallel to an annulus in the boundary containing curves of Γ. Otherwise
M is ∂-irreducible. Take a collection of disjoint vertical annuli A disjoint from Γ:
n that separate a neighbourhood of each singular fibre (that is disjoint from Γ)
from M and then some more annuli that cut the remaining part of M into a solid
torus. Isotope S such that S is transverse to A and such that |S ∩A| is minimised.
Consider S ∩ A, which consists of arcs and closed curves. Note that S ∩ A does
not contain any curves that are trivial in S or A, as then by the irreducibility of
M and the incompressibility of S we could reduce |S ∩A|. It also does not contain
any arcs that are ∂-parallel in S or A as S is ∂-incompressible and M is irreducible
and ∂-irreducible. As any arc in an annulus that starts and ends on the same
boundary component is ∂-parallel, this means that S ∩ A contains none of these.
Thus S intersects A in a collection of spanning arcs and vertical fibres. By the same
reasoning, the same holds for the intersection of S with each annulus of ∂M − ∂A.
Note that as S is embedded it must intersect each annulus of A and ∂M − ∂A
in only one of these two types. If S intersects any annulus in a spanning arc, it
intersects all neighbouring annuli to that one in a spanning arc, and hence (as M
is connected) all annuli in the collection. Thus the two types are incompatible, so
S ∩A must consist of only one of the two.

Let M0 be M\\A, and let S0 be S\\A in M0. Let M1 be the non-singular-
fibre-neighbourhood component of M0, and let S1 be S0 ∩M1. We claim that S0

is incompressible: consider the boundary of some compressing disc. This curve
bounds a disc in S as S is incompressible, and that disc intersects the annuli A in
simple closed curves. We can use the irreducibility of M to isotope S through this
disc, in the process reducing |S ∩A|.

Suppose that S ∩A consists of vertical fibres. Recall the classification of incom-
pressible surfaces in the solid torus from Proposition 3.4. Then S1 is a collection of
vertical annuli: it is incompressible, not a meridian disc, and cannot be an incom-
pressible non-orientable surface as one f its boundary curves intersects the meridian
once, which is odd. Then the remaining part of S, its intersection with the singular
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fibre neighbourhoods, can vary: if a given fibre has odd multiplicity, S does not
intersect the fibre so must be disjoint from the neighbourhood by the minimal-
ity of |S ∩ A|. If the multiplicity is even, it may intersect the neighbourhood in
a punctured non-orientable incompressible surface. Gluing up, we find that S is
pseudo-vertical as claimed.

Suppose that S ∩ A consists of spanning arcs. (Note that in this case Γ must
be empty, as otherwise S would intersect it.) We claim that we can isotope S so
that S0 is ∂-incompressible: if it is not, let D be a non-trivial ∂-compression disc
for S0. Consider the arc α = ∂D ∩ ∂M0. We will isotope α so that it is contained
in ∂M0 ∩ ∂M . In this situation we are done: as S is ∂-incompressible, we can use
this boundary compression to reduce |S ∩A|. Note that α consists (up to isotopy)
of a collection of arcs in annuli. These annuli are alternately from ∂M0 ∩ ∂M and
∂M0 ∩ A. If α is contained in one component of ∂M0 ∩ A, we can use an isotopy
in a collar of the boundary to push α into an adjacent component of ∂M0 ∩ ∂M .
Otherwise, starting at one end of α, use an isotopy in the collar of the boundary to
push this arc α into the adjacent annulus. We can continue this until α is contained
in a single annulus. Thus S0 is ∂-incompressible so is a collection of meridian discs
in each of the solid tori, and hence is horizontal. �

We return to finding a fundamental horizontal surface.

Proposition 3.7. Suppose that M is a Seifert fibered space with non-empty bound-
ary that is not S1 × D2, T 2 × I, or K ×∼ I. Let T be a triangulation of M . Let
p be the lowest common multiple of the multiplicities of the singular fibres. There
is a fundamental horizontal normal surface in M that is a degree p cover of the
underlying orbifold. If M is S1×D2, then there is a fundamental normal meridian
disc.

Proof. The solid torus case follows from Corollary 6.4 of Jaco and Tollefson’s pa-
per [12]. Otherwise, let n be the number of singular fibres (which may be zero).
Note that M is irreducible and ∂-irreducible.

Consider M to be constructed by taking a circle bundle M ′ over a surface Σ with
non-empty boundary, then gluing n solid tori (that is, neighbourhoods of singular
fibres) on along vertical annuli with respect to the fibration of M ′, on a single
boundary component of M ′. The meridian of one of these solid tori, containing a
(pi, qi) singular fibre, intersects the gluing annulus in pi spanning arcs.

Take a degree p horizontal surface in M ′: if Σ is orientable, this will be p copies
of Σ; otherwise it will be bp2c copies of the double cover of Σ, in addition to one
copy of Σ if p is odd. Either way, its intersection with each vertical annulus in
the boundary of M ′ will be as p spanning arcs. We can thus take p

pi
meridian

discs in each of these singular fibre neighbourhoods and attach them to the degree
p horizontal surface in M ′ to form a connected degree p horizontal surface in M .
Now, this surface is incompressible (as it is a finite cover of the base orbifold and
hence is π1-injective) and ∂-incompressible (by the same argument on the double
of M), and does not contain any trivial spheres or discs, so let F be a minimal
normal surface that is isotopic to it.
Claim 1: The Euler characteristic of F is negative.
Proof: Note that χ(F ) = pχ(Σ) −

∑n
i=1

p
pi

(pi − 1), where the sum is over the

singular fibres, as adding each meridian disc corresponds to gluing a disc to the
surface in M ′ along pi different segments of its boundary. As F has boundary,
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χ(F ) is positive only if the base surface of M is a disc and M has at most one
singular fibre, but in this case M ∼= S1 × D2. The Euler characteristic is zero
if either M is a circle bundle over a surface of zero Euler characteristic, so M is
A×S1 ∼= T 2× I or S×∼ S1 ∼= K×∼ I, or the base orbifold is a disc with two singular
fibres, which must both be multiplicity two. In this last case, M ∼= K ×∼ I. As we
have ruled out all of these possibilities in the statement of the proposition, χ(F ) is
negative. �

Suppose that F = G1+G2 is a non-trivial sum of normal surfaces that minimises
|G1 ∩G2| among all such non-trivial decompositions of F . If one of G1 or G2 were
not connected, we could write G1, say, as G′1 ∪G′′1 , and then F = G′1 + (G′′1 +G2)
would be a sum with |G′1 ∩ (G′′1 +G2)| < |G1 ∩G2|, so the Gi must be connected.
Claim 2: At least one of G1 and G2 is horizontal.
Proof: As F is horizontal it is incompressible and ∂-incompressible and is not a
trivial disc or sphere. By Theorem 3.2, the same holds for G1 and G2. Thus G1

and G2 are horizontal or pseudo-vertical by Lemma 3.6.
Suppose both G1 and G2 are pseudo-vertical, so are either annuli or are nonori-

entable surfaces with one boundary component. Note that as ∂F is not a vertical
curve, there must be at least one component of each of ∂G1 and ∂G2 on each
boundary component of M .

Consider the case when p is odd. As summing normal surfaces is additive on
homology with Z2 coefficients, ∂F = ∂G1+∂G2 inH1(∂M ;Z2). Now as F intersects
each regular fibre p times, ∂F intersects any boundary component as p′ curves where
p′ divides p and thus is odd. As a consequence, ∂F is nontrivial in the restriction
to the Z2-homology of each boundary component. Since p is odd, there are no even
multiplicity singular fibres, so there are no nonorientable pseudo-vertical surfaces.
In this case, as G1 and G2 are both vertical annuli, we can see that ∂(G1 +G2) is
trivial in Z2-homology on at least one boundary component. If there is only one
boundary component, ∂(G1 +G2) ≡ 2∂G1 ≡ (0, 0) ∈ H1(T 2;Z2). If there are two,
as there is at least one component of the boundary of each of the surfaces G1 and
G2 on each boundary component, G1 ∪G2 intersects each boundary component in
the union of two vertical curves, which similarly is trivial in Z2-homology. Either
way, we have a contradiction.

Otherwise p is even so F is orientable. Then 2F , the double of F as a nor-
mal surface vector, is minimal in its isotopy class and is incompressible and ∂-
incompressible as it is just two copies of F . As 2F = 2G1 + 2G2, by Theorem 3.1
the doubles of G1 and G2 are incompressible and ∂-incompressible. As 2Gi is ori-
entable, and ∂(2Gi) is two copies of ∂Gi and so is a vertical fibre, each Gi is a
vertical surface and so has Euler characteristic 0. But as χ(2Gi) = 2χ(Gi), each
Gi has zero Euler characteristic, so χ(F ) = 0, which contradicts Claim 1. �

We can thus assume that G1 is horizontal. It remains to show that the degree of
its induced covering of the base orbifold is p. Now, G1 intersects the singular fibre
neighbourhoods (which were cut out by vertical annuli) in a collection of meridian
discs. A meridian disc around a multiplicity pi fibre intersects the relevant vertical
annulus in pi spanning arcs. We know that up to isotopy G1 intersects the circle
bundle M ′ as a horizontal surface, and so in particular intersects each vertical
annulus in the boundary component of M ′ along which we glued the singular fibres
the same number of times. Thus this number must be a multiple of all of the
multiplicities: that is, it is kp for some integer k, recalling that p is the lowest
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common multiple of the pi, and G1|M ′ is a degree kp cover of Σ. If n = 0, taking
the lowest common multiple of the empty set to be 1 by definition, this reasoning
holds vacuously.

Note that k is at least one, and 1
kχ(G1) = χ(F ) < 0 by Claim 1. Thus χ(G1)

is uniquely maximised when k = 1; as χ(G1) ≥ χ(F ), and this maximum achieves
equality, k must be 1 and hence G1 is a degree p horizontal surface. Thus there is
a fundamental such surface. �

4. Split handle structures

In this section we introduce split handle structures, which naturally arise when
we cut handle structures along normal surfaces. We will use them in Section 5 to
show that there is a maximal collection of normal vertical annuli of bounded weight.
We keep track of parallelity pieces, which occur when these normal surfaces run
close to each other, and also of the image of these surfaces in the boundary, which
we term the forbidden region as later normal surfaces are forbidden to intersect
it. We will use the term “sutures” for the boundary of this forbidden region as
split handle structures are reminiscent of sutured handle structures, which were
devised by Lackenby (see §5 of [17] for an exposition) to allow for normal-surface-
type arguments in the context of Scharlemann’s combinatorial approach to Gabai’s
sutured manifold decompositions [27]. Both sutured handle structures and split
handle structures act as bookkeeping to record surfaces that have been cut along.
We note that normal surfaces in split handle structures are also evocative of the
normal surface theory of handle structures with boundary pattern if we require
that elementary discs do not intersect the pattern. However, in the boundary
pattern case, we usually require that the pattern is contained in the 1-skeleton of
the induced handle structure on the boundary (see [21, §3]). Here, the sutures are
normal curves.

Definition 4.1. Let P be an I-bundle over a surface Σ such that Σ has non-

empty boundary, so P is equipped with a homeomorphism to Σ×(∼)I. The horizontal

boundary of P , ∂hP , is Σ×(∼)∂I, and the vertical boundary of P , ∂vP , is ∂Σ×(∼)I.

Definition 4.2. A split handle structure H for a compact orientable 3-manifold
M is a partition of M into:

(1) k-handles for k between 0 and 3, where each k-handle has a homeomorphism
to Dk ×D3−k, and

(2) parallelity pieces, each with a homeomorphism to Σ ×(∼)I for Σ a compact
surface

and with a distinguished forbidden region I ⊆ ∂M such that the following con-
ditions hold. Write Hk for the collection of k-handles, HP for the collection of
parallelity pieces, and ∂hHP or ∂vHP respectively for the collection of the hori-
zontal or vertical boundaries of the parallelity pieces. The boundary graph of a
0-handle H in a split handle structure is the decorated graph in ∂H ∼= S2 whose
vertices, which we call islands, are the components of H ∩H1, whose edges (which
we call bridges) are the components of H ∩ H2 and H ∩ HP , and which may have
sutures, which are the arcs H∩∂I. We say that the boundary graph divides ∂H into
islands, bridges, lakes (components of intersection between ∂H and H3 ∪ ∂M −I),
and forbidden regions which are components of H ∩ I.

We require that:
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(1) each k-handle Dk×D3−k intersects handles of lower index in exactly ∂Dk×
D3−k, and is disjoint from the other k-handles;

(2) the boundary graph of each 0-handle is connected;
(3) each parallelity piece is disjoint from the 2- and 3-handles and the other

parallelity pieces;
(4) the forbidden region I ⊆ ∂M contains ∂hHP ;
(5) each 1-handle D1 × D2 intersects 2-handles D2 × D1 in components that

are of the form D1 × γ in the 1-handle and λ×D1 in the 2-handle, where
γ and λ collections of arcs in ∂D2 in the respective product structures;

(6) the intersection of any component P ∼= Σ×(∼)I ofHP with a 1-handle D1×D2

is as D1 × γ in the 1-handle and λ× I in the parallelity piece, where γ is a
collection of arcs in ∂D2 and λ is a collection of arcs in ∂Σ.

If I is not empty, we require the following. Write (∂H)k for each k for the
components of ∂M ∩ Hk, and (∂H)P for the components of intersection of ∂M
with HP . Note that (∂H)0 and (∂H)2 are collections of discs, and (∂H)1 and
(∂H)P are collections of discs and possibly some annuli. We require that ∂I avoids
(∂H)2, runs through discs of (∂H)0 and (∂H)1 in arcs that each do not start and
end on the same component of (∂H)0 ∩ (∂H)1, and intersects each component of
∂vHP∩∂M in exactly two arcs or curves, each of which is transverse to the I-bundle
structure from the parallelity pieces.

If the forbidden region is empty (which implies that there are no parallelity
pieces), this is the usual notion of handle structure.

Definition 4.3. A surface in a split handle structure is ∂-compressible if it admits
a non-trivial ∂-compression disc that is disjoint from the forbidden region.

Whenever we refer to a ∂-compression disc, we require that the disc is disjoint
from the forbidden region.

4.1. Normal surfaces.

Definition 4.4. A properly-embedded surface in M is standard with respect to a
split handle structure if it satisfies the following conditions:

(1) it is disjoint from the 3-handles and from the forbidden region;
(2) it is transverse to the I-bundle structure of the 2-handles D2 × I and the

parallelity pieces Σ×(∼)I, and is disjoint from their horizontal boundaries;
(3) no component of it is contained in a parallelity piece;
(4) it intersects the 1-handles D1 × D2 in a union of D1-fibres, where each

component of this intersection is a disc;
(5) it intersects the 0-handles in discs.

Note that it follows from the definition that if F is a standard surface, then it
intersects each 2-handle D2 × D1 in sheets of the form D2 × {∗}, and similarly
intersects each parallelity piece in sheets that are a section of the I-bundle or, if Σ
is nonorientable, the double cover of a section.

Definition 4.5. A standard surface F in M with respect to a split handle structure
H is normal if it satisfies the following additional conditions:

(1) F intersects each 1-handle D1 × D2 in D1 × λ where λ is a collection of
disjoint proper arcs in the island {0} × D2, such that no component of λ
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starts and ends on the same connected component of the intersection of the
island with a lake;

(2) the intersection of F with each lake does not contain any closed curves or
arcs that start and end on the same component of the intersection of the
lake with an island;

(3) F intersects each 0-handle in discs, called elementary discs, such that the
boundary curve of each of these discs crosses each bridge and lake at most
once, and if a bridge and a lake are adjacent, intersects only one of the pair.

This is a generalisation of the usual notion of a normal surface in a handle
structure. Note that the boundary of an elementary disc of F in the boundary
graph of H determines the disc.

Definition 4.6. An admissible isotopy of a surface with respect to a split handle
structure is an isotopy of the surface in the manifold that fixes the forbidden region
I as a set.

A normal isotopy of a normal surface in a split handle structure is an isotopy of
the surface in the manifold that fixes each of I, Hk for each k, and HP as a set.

Definition 4.7. A normal surface in a split handle structure with forbidden region
I is duplicate if it has two components that are normally isotopic, or it has a
component F such that there is a connected component I of the forbidden region,
with a collar C(I) ∼= I × [0, 1], such that F is normally isotopic to I ×{1} in C(I).

The motivation for split handle structures is that their complexity does not grow
fast when we cut along a normal surface. We give the normalisation procedure in
the appendix (Procedure A.2) and show that it terminates, and in Proposition A.6
prove that if a surface F is incompressible and ∂-incompressible in an irreducible
and ∂-irreducible 3-manifold M with a split handle structure H such that F is
disjoint from the forbidden region and no component of F is a sphere or disc or
entirely contained in a parallelity piece, then F is isotopic to a normal surface.

Definition 4.8 (Induced split handle structure construction). Let F be a normal
surface in M , with respect to a split handle structure H. The induced split handle
structure on M\\F is constructed as follows.

Consider H\\F . Set its forbidden region I to be the union of the forbidden
region from M and the image of F in M\\F . (Note that, as F was normal, these
are disjoint.) As F is disjoint from the 3-handles, we can continue to view them as
3-handles in H\\F .

A component of a k-handle inH\\F will become either a k-handle or a parallelity

piece. This is determined as follows. First, if P ∼= Σ×(∼)I is a parallelity piece of H,
as F intersects P in sheets transverse to the I-bundle structure, each component

of P\\F inherits an I-bundle structure as either Σ ×(∼) I or possibly, if Σ is not

orientable, as Σ̃ × I where Σ̃ is the double cover of Σ. Thus we can view each
component of P\\F as a parallelity piece.

If H ∼= D2 × D1 is a 2-handle of H, a component C of H\\F is itself an I-
bundle over D2, with two horizontal boundary components, each of which arises
from intersection with a 3-handle, with I, or with ∂M − I. If both components
arise from intersection with I, set C to be a parallelity piece; otherwise, view C as
a 2-handle.
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If H ∼= D1 × D2 is a 1-handle of H, a component C of H\\F is a parallelity
piece if its boundary consists of the following components: first, two components
in the forbidden region I (whether from the forbidden region in M or arising from
intersection with F ); second, two components arising from intersection with pieces
of 0-handles from M ; and finally, the two remaining components where each is a
component of intersection with one of ∂M , a single 2-handle, or a single parallelity
piece. In this case, C has an I-bundle structure by setting ∂hC to be the two com-
ponents in the forbidden region, and choosing a product structure on the remaining
boundary, ∂vC, such that each of the four components described above is a union
of fibres, and then interpolating. (Note that this product structure can be chosen
to be compatible with the product structure on any parallelity pieces defined thus
far that C intersects).

Finally, if H ∼= D0 × D3 is a 0-handle and C is a component of it, consider
the boundary of C. Set C to be a parallelity piece if its boundary contains two
components of intersection with I and if there is a product structure D2 × I on C
such that its intersection with I is D2×∂I, and each component of its intersection
with any of the other handles created so far is of the form α × I, where α is an
arc or curve in ∂D2. Again, note that we can choose this product structure to be
compatible with any parallelity pieces that C intersects. Otherwise, set C to be a
0-handle.

Now, take the parallelity pieces of H to be the union of the parallelity pieces
described so far, which we equipped with compatible product structures where they
intersected.

We write H\\F for the induced split handle structure on M\\F .

Lemma 4.9. If F is a normal surface in a split handle structure H, then the
induced split handle structure H\\F is itself a split handle structure.

Proof. If a piece from a k-handle inH\\F becomes a parallelity piece in the induced
split handle structure, then any pieces from handles of higher index will also be
parallelity pieces. As a result, each k-handle Dk × D3−k will intersect handles of
lower index in ∂Dk × D3−k and will be disjoint from the other k-handles. The
boundary graph of each 0-handle will be connected as the boundary graph of each
0-handle arises from taking a connected boundary graph, removing some discs from
it, and adding in the boundary of these disc (as we add a new suture for each time
the boundary of one of the discs runs through a lake). As F does not intersect
any 3-handles, so each one becomes a 3-handle in H\\F , each parallelity piece will
be disjoint from the 2- and 3-handles. As intersections of parallelity pieces with
1-handles must necessarily arise from intersections between a 2-handle and a 1-
handle, and the product structure of the 2-handle is compatible with that of the
parallelity piece, the intersections between parallelity pieces and 1-handles are of
the required form. The intersection of ∂I with the boundary has the required form
as F is normal. �

Definition 4.10. A 0-handleH is semitetrahedral if it is disjoint from the forbidden
region and its boundary graph is a connected subgraph of the complete graph on
four vertices. A split handle structure is semitetrahedral if all of its 0-handles are.

A 0-handle H is subtetrahedral if there is some 0-handle H ′ in some semitetra-
hedral handle structure H with normal surface F such that H is homeomorphic
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to one of the non-parallelity pieces obtained from H ′ in the induced split handle
structure H\\F .

We say that a split handle structure is subtetrahedral if all of its 0-handles are
subtetrahedral.

Lemma 4.11. Let T be a (material) triangulation of a (compact) 3-manifold M ,
such that the intersection of each tetrahedron with ∂M is connected and contractible.
The dual handle structure to T , formed by taking a (3 − k)-handle for each k-
simplex of T that is not in ∂T , satisfies the definition of a subtetrahedral split
handle structure with empty forbidden region and no parallelity pieces.

If H is a subtetrahedral split handle structure, and F is a normal surface in H,
then the induced split handle structure on H\\F is also subtetrahedral.

Proof. The complement of the boundary graph of a 0-handle will deformation re-
tract to the intersection of the corresponding tetrahedron with the boundary, so
the handles of this dual handle structure have connected boundary graphs. The
second part follows by definition. �

As in the triangulation case, we can view normal surfaces algebraically. Let H be
a subtetrahedral split handle structure. Let dH be the maximal number of types of
elementary disc in any subtetrahedral 0-handle, which is finite by Lemma A.11. To
a normal surface F inH we can associate a vector in ZdH |H| by counting the number
of elementary discs in F of each type. Since F must avoid any parallelity piece of
H that does not intersect at least one 0-handle, this vector uniquely determines F .
We can interpret summation in Zdh|H| geometrically as follows.

Procedure 4.12 (Normal surface sum in split handle structures). Suppose G1 and
G2 are normal surfaces in a subtetrahedral split handle structure H, such that if
we view them as vectors in ZdH |H|, F = G1 + G2 is also a vector representing a
normal surface. We can realise G1 and G2 so that they are disjoint in the 0-handles
and transverse elsewhere. In the 1-handles, we can use the product structure to
ensure that any two components of G1 ∩ H1 and G2 ∩ H1 intersect in a single
arc that is contained in some {∗} × D2 in the 1-handle D1 × D2. As we have
two embedded surfaces, there are no triple points of intersection. Now, in the 2-
handles and parallelity pieces, we know that G1 and G2 intersect them in sheets
transverse to the I-bundle which are determined by their boundaries. Fix a 2-

handle or parallelity piece H ∼= Σ×(∼)I. So long as at most one of G1∩H and G2∩H
contains a nonorientable piece, we can realise all the components of G1 ∩ H and
G2 ∩H as follows. Let H ′ be the complement in H of a collar of the boundary of
H. Take the correct number of sheets of G1 and G2 in H ′. Then interpolate in the
collar to achieve the required intersection pattern of G1 and G2 in ∂vH, such that
G1∩G2∩H contains no closed curves. If both of them contain a nonorientable sheet
in H, then we can realise the two sheets to intersect in H ′ in a single arc, and then
again interpolate in the collar to achieve the required intersection pattern. Now at
each arc of intersection of G1 and G2 in H, if we cut along the arc then we have
two choices of how to reglue to resolve the intersection: a choice of switch. This
is determined by the picture at one of the arc’s endpoints p in ∂vH. The regular
switch, which is the choice of gluing that produces sheets transverse to the product
structure, produces two sheets of the same types as those we started with (unless
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both the sheets were nonorientable, in which case it produces one sheet that is a
double of one of them).

We wish to show that choosing all regular switches is compatible. As the product
structures of the 1-handles and the 2-handles or parallelity pieces are transverse, if
we consider the arc of intersection in the 1-handle containing p, the choice of regular
switch at p induces the regular switch on the other end of the arc. Similarly, as the
regular switch is the choice giving sheets transverse to the product structure on the
2-handle or parallelity piece, if we consider the arc in H containing p, the choice of
regular switch at p induces the regular switch along the whole arc. Thus there is a
global regular switch for G1 ∪G2, which produces F .

Definition 4.13. The weight of a normal surface F is (p(F ), b(F ), |F∩∂M |), where
p(F ) is |F ∩ (∂H2 ∪ ∂HP)| and b(F ) is |F ∩H1|.

Lemma 4.14. Let G1 and G2 be normal surfaces such that the vector F = G1 +
G2 also corresponds to a normal surface. Let F ′ be an incompressible and ∂-
incompressible surface constructed by resolving the curves of intersection of G1∪G2

that includes at least one irregular switch. Then F ′ is isotopic to a normal surface
of lower weight than F .

Proof. Take G1 and G2 to minimise |G1 ∩ G2| in their normal isotopy class. The
plate degree p(F ) is p(G1) + p(G2) as the intersection of F with the boundaries of
the 0-handles is the union of the intersections of G1 and G2 with them. Suppose we
take the irregular switch at some point p in the boundary of a 2-handle or parallelity
piece H. Let c be the number of essential curves of G1 and G2 in the component of
∂vH containing p. Write F ′ for the result of this irregular switch at p. The point
p is in some component of intersection Q of H with a 1-handle or the boundary, as
G1 ∪G2 is disjoint in the 0-handles.

Suppose that p is in the boundary of a 1-handle or a component of intersection
with the boundary that is a disc. This disc Q naturally has a boundary comprised
of four edges: two arcs in ∂hH and two arcs in ∂vH. Note that the two edges of
∂Q in ∂vH each intersect G1∪G2 in c points. However in the irregular switch case,
Q ∩ F ′ now contains at most c− 2 spanning arcs, so it contains an arc that starts
and ends on the same edge of ∂Q: a return in the language of Matveev [21, §4]. But
then this gives us a disc of F ′ ∩H0 whose boundary runs through the same bridge
twice, so F ′ is not normal. When we normalise F ′ in Procedure A.2, in Move 2 we
will reduce its plate degree by at least two, so F ′ is isotopic to a normal surface of
plate degree at most p(F )− 2.

If p is in a component of intersection with the boundary that is an annulus (that
is, if the component of ∂vH containing p is entirely in the boundary) then in most
cases – if at most one of the sheets containing p is nonorientable, or if p is one end
of an arc of intersection that projects to an inessential arc in Σ – we could have
isotoped G1 and G2 to remove this intersection. The only case when this is not
possible is if both the sheets are nonorientable and p is an endpoint of an essential
arc of intersection. If we take the irregular switch at p, then there is a spanning
arc of this annulus of ∂vH that intersects the resulting configuration c − 2 times,
so again in Move 2 we will reduce the plate degree of F ′ by at least two. �

Lemma 4.15. A normal surface in a subtetrahedral split handle structure has non-
zero beam degree.
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Proof. As no component of a normal surface is contained in a parallelity piece, every
normal surface contains at least one elementary disc. It suffices to show that the
boundary of each elementary disc intersects at least one island. Since the boundary
graph of each 0-handle is connected and contains at least one island, every curve
contained in a lake is trivial and each bridge starts and ends on an island. The
boundary of the elementary disc runs through a bridge or lake and thus through
some island. �

4.2. Fundamental normal surfaces. Fix a subtetrahedral split handle structure
H of a manifold M and recall that we can associate a vector in ZdH |H| to each
normal surface in H, where by Remark A.13 dH is at most 13 · 13!, so is bounded.
A vector v in ZdH |H| corresponds to a normal surface F if and only if it satisfies
the following conditions:

(1) each coordinate of v is nonnegative;
(2) fixing a parallelity piece P and a component of intersection C1 of P with a 0-

handle, for any other component C2 of intersection of P with H0, |P ∩C1| =
|P ∩ C2|;

(3) for each 1-handle D1 ×D2, which has two components of intersection with
0-handles, for each arc type in {0} ×D2 up to normal isotopy, the number
of elementary discs in each 0-handle of the types that intersect the 1-handle
in that arc type are the same; and

(4) for each pair of elementary disc types in a subtetrahedral 0-handle, if they
have an essential intersection then v contains only one of them.

The first three conditions give us a cone C in ZdH |H|, as they are linear. Note
that if v ∈ C satisfies the fourth condition and v = t+ u for t, u ∈ C, then t and u
also satisfy the fourth condition.

Definition 4.16. A normal surface F is fundamental if whenever F = G1 +G2 as
a sum of normal surfaces, one of G1 and G2 is empty.

Note that a fundamental normal surface must be in any (minimal) set that
spans C with Z+ coefficients: a minimal Hilbert basis. Linear integer programming
techniques, as used by Haken [5] and Hass-Lagarias-Pippenger [7, §6], tell us that
there is a universal constant c such that any fundamental normal surface with
respect to a triangulation with t tetrahedra has size at most ct, where we recall
the definition of size from Definition 1.4. Their work was in the setting of normal
surfaces in triangulations but the general linear programming approach applies
generally, as summarised by Lackenby:

Proposition 4.17 (Theorem 8.1 [17]). Suppose that A is a m×n matrix. Consider
the cone of solutions to Ax = 0, subject to the constraint that all entries of x
are nonnegative. Suppose that each row of A has `2 norm at most k. If x is a
fundamental solution (i.e. is in the integral Hilbert basis) to this system, then each
coordinate of x is bounded by n3/2kn−1.

We can apply these bounds in our setting as follows.

Lemma 4.18. There exists a constant cF , which we can take to be 274+74·13·13!,
such that if G is a fundamental normal surface in a subtetrahedral split handle

structure H then the size of G is bounded by c
|H|
F .
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For this proof, we will use the following result from the appendix on the combi-
natorics of subtetrahedral split handle structures:

Lemma A.7. Let H be a subtetrahedral 0-handle. Let G be its boundary graph in
∂H ∼= S2. Then G contains between one and four islands; each island has at most
three components of intersection with bridges; and if b is the number of bridges of
G, then the number of sutures of G at most 12 − 2b and an island intersecting v
bridges has at most 6− 2v intersections with sutures.

Proof of Lemma 4.18. Note that n is at most dH |H|. The constraints from the
parallelity piece equations give at most 6|H| equations (one for each bridge), where
the form of each equation is to set the sum of two lists of elementary discs to be
equal, where each list is contained in one 0-handle, and so its `2 norm is at most
2dH .

As each 0-handle has at most four islands, there are at most 2|H| 1-handles. Fix
one of these islands, I. By Lemma A.7 it intersects at most three bridges – let v
be this number – and at most 6− 2v sutures. As each part of the forbidden region
that intersects I is bounded on each side by sutures or sides of bridges, of which we
have a total of at most six, I has at most three components of intersection with the
forbidden region. We thus have divided the boundary of I into at most 9 possible
segments for elementary discs to enter and leave by (corresponding to intersections
with bridges and lakes, but not the forbidden region), where an arc of intersection
of an elementary disc with I is determined by its entry and exit segments. There
are thus at most 8 ·9 = 72 arc types in I from elementary discs. Thus each 1-handle
gives at most 72 equations, of the same form as in the parallelity piece case: setting
some sums of elementary disc types to be equal, which will be a row of A of `2

norm at most dH .
The number of elementary discs of any given type of G is thus bounded by

(dH |H|)3/2ddH |H|−1H . We can then find a cF as follows:

|G| ≤ |H|(dH |H|)3/2ddH |H|H

= 23/2 log(dH)+5/2 log(|H|)+dH log(dH)|H|

≤ 22(dH+1) log(dH)|H|

so we can take cF to be 22(dH+1) log(dH) which, as by Remark A.13 dH is at most
13 · 13! < 237, is bounded above by 274+74·13·13!. �

The following result generalises an idea first developed by Simon King in his
doctoral thesis to find a maximal collection of normal spheres in a 3-manifold [14,
§3.2 and §3.3].

Lemma 4.19. There exists a constant cB, which we can take to be 2182·13!, such
that the following holds. Let M be a manifold with a subtetrahedral split handle
structure H. Let {Σi} be a collection of n disjoint normal surfaces in M such that,
if we set H0 := H and Hi := Hi−1\\Σi, then Σi+1 is non-duplicate and of size
at most 2f(|Hi|) in the induced split handle structure on Hi for some (increasing)
function f that does not depend on i and has f(1) ≥ 1. Then there is a normal

surface representative of the collection in H whose size is at most c
|H|f(213|H|)
B .

Proof. By Lemma 4.9 Hi is indeed a split handle structure for each i. Let s(i) be
the size of surfaces Σi, . . . ,Σn included into Hi−1. As Σi+1 avoids the forbidden
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region of Hi, it is disjoint from Σi, so their normal sum is their disjoint union. Now,
when we include the surfaces Σi+1, . . . ,Σn into Hi−1 and consider their size, two
things happen: some of the parallelity pieces of Hi may be broken up into many
0-handle pieces and some of the elementary disc types of Hi may be identified,
which does not change the total count of them in the surfaces. As the parallelity
pieces had to have been been created from cutting along Σi, each sheet of the
surfaces in a parallelity piece in Hi decomposes into at most |Σi| 0-handle pieces
in Hi−1. As each sheet is adjacent to some elementary disc in a 0-handle of Hi,
and (as there are most six bridges in each of these 0-handles) each elementary
disc runs through at most six bridges, the number of sheets is at most 6s(i + 1).
Thus when we include Σi+1, . . . ,Σn into Hi−1, the new weight s(i) is at most
|Σi|+ s(i+ 1) + 6s(i+ 1)|Σi| ≤ 8s(i+ 1)|Σi|.

By Lemma A.10, |Hi| is at most 213|H| in Hi+1 for all i. Thus |Σi| ≤ 2f(2
13|H|)

for all i, so s(i) ≤ s(n)(8 · 2f(2
13|H|))n−i. Thus we have that s(0) is at most

8n2(n+1)f(213|H|). By a Kneser-Haken finiteness argument, as Σi+1 is non-duplicate
either it and another Σi are a pair of a nonorientable surface and its orientable
double cover, or it contains some elementary disc that is not in a parallelity region,
so n is at most 4dH |H|. Now, we bound cB as follows:

s(0) ≤ 212dH |H|2(dH |H|+1)f(213|H|)

≤ 214dH |H|f(2
13|H|)

which, as by Remark A.13 dH is at most 13 · 13!, gives us the bound. �

Corollary 4.20. There exists a constant cS, which we can take to be 1010
30

, such
that the following holds. Let M be a manifold with a subtetrahedral split handle
structure H. Let {Σi} be a collection of n disjoint normal surfaces in M such that,
if we set H0 := H and Hi := Hi−1\\Σi, then Σi+1 is a non-duplicate fundamental
normal surface in Hi. Then there is a normal surface representative of the collection

in H whose size is at most c
|H|2
S .

Proof. This immediately follows from Lemmas 4.18 and 4.19, as well as the fact

that c
213 log2 cF
B < 2182·13!·2

13(74+74·13·13!) < 1010
30

. �

5. A complete bounded collection of normal vertical annuli

We will use normal surfaces in split handle structures, as developed in Section 4
and Appendix A, to show that there is a maximal collection of normal vertical
annuli of bounded weight. The main result of Appendix A is the following.

Proposition A.16. Let M be an irreducible ∂-irreducible 3-manifold and let H
be a subtetrahedral split handle structure for M . Let F be a normal surface of
minimal weight in its (admissible) isotopy class which is incompressible and ∂-
incompressible, with F = G1 + G2. Then G1 and G2 are also incompressible and
∂-incompressible, and neither G1 nor G2 is a copy of S2, RP 2 or a disc.

5.1. Fundamental Möbius bands.

Lemma 5.1. If S is a Möbius band in an orientable irreducible 3-manifold M
where ∂S is non-trivial in π1(M), then the double of S is essential unless M is
S1 ×D2.
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Proof. As the double of S, S̃, is an annulus, there is only one loop (up to isotopy)

in S̃ that does not bound a disc in S̃: one of its boundary components. As this is
isotopic to ∂S, it is non-trivial in π1(M) so cannot bound a disc in M either, so S̃

is incompressible. As S̃ is the boundary of a neighbourhood of S, it is separating.
Since M is irreducible, an annulus is ∂-parallel if and only if it is ∂-compressible.
In this case, we can note that the boundary of a neighbourhood of a Möbius band
is not, in fact, boundary-parallel in this neighbourhood. So if S̃ is not essential, it
cuts M into S1 × I × I and S ×∼ I, so M is S ×∼ I ∼= S1 ×D2. �

Lemma 5.2 (Lemma 2.4 [22]). Suppose that M is irreducible, ∂-irreducible, and
is not T 2× I or K ×∼ I. Let S be a toroidal boundary component of M . If A and B
are properly-embedded incompressible and ∂-incompressible annuli in M (that are
not necessarily disjoint), such that at least one boundary component of each is on
S, then these boundary components are isotopic.

Lemma 5.3. Suppose that M is a Seifert fibered space with non-empty bound-
ary, not homeomorphic to a solid torus or K ×∼ I, and has a subtetrahedral split
handle structure H, where the forbidden region (if non-empty) is a collection of
vertical annuli. If M has any multiplicity two singular fibres, then for each bound-
ary component T of M , there is a fundamental normal pseudo-vertical Möbius band
containing one of these fibres whose boundary is on T .

Proof. Note that no Seifert fibration of T 2 × I has multiplicity two singular fibres.
Let S be a pseudo-vertical Möbius band which is incompressible, ∂-incompressible,
and disjoint from I. Up to isotopy, we can consider it to be a union of regular
fibres and the multiplicity two singular fibre. By Lemma 5.1 the double of S, S̃, is
essential in M with empty forbidden region, and so is essential in H.

Let F be a minimal normal surface representative of S. Suppose that F =
G1+G2. By Proposition A.16, G1 and G2 are incompressible and ∂-incompressible,
and each has Euler characteristic at most zero, and so (as χ(F ) = 0) equal to zero.
By Lemma 3.6 they are both thus horizontal or (pseudo-)vertical. If one is a Möbius
band, say G1, taking the double and observing by the same reasoning as above that
it is essential, we can see by Lemma 5.2 that ∂G1 is isotopic to ∂F . It is thus a
pseudo-vertical Möbius band, so is (up to isotopy) a union of regular fibres and a
single multiplicity two singular fibre. Note that as the boundary of G1 is a summand
of that of F , ∂G1 is contained in T . By Lemma 4.15 the weight of G2 is non-zero
so the weight of G1 is strictly less than that of F .

As at least one of G1 and G2 has boundary and we have dealt with the Möbius
band case, either both are annuli or one is an annulus and the other is closed. In
either of these cases, we can apply Lemma 5.2 to the boundary components of the
essential annuli to see that their boundary curves are isotopic to ∂F . There are
an even number of boundary curves among G1 and G2, so ∂G1 + ∂G2 is trivial in
H1(∂M ;Z/2). But ∂F is not as it is a single curve, and normal sum is additive
on homology with Z2 coefficients, so we have a contradiction. Thus there is a
fundamental pseudo-vertical Möbius band. �

5.2. Fundamental vertical annuli.

Lemma 5.4. The only Seifert fibered spaces containing horizontal Möbius bands
are those with the Seifert data [D2, 1/2, 1/2] or that of a circle bundle over a Möbius
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band. The only additional Seifert fibered space containing a horizontal annulus has
the Seifert structure of a circle bundle over an annulus.

Note that in the first two cases M is homeomorphic to K ×∼ I.

Proof. Write S for the Möbius band, and let M be such a Seifert fibered space. As
χ(S) = 0, the base orbifold G has χ(G) = 0. If we write χ(G) = 2−a−b−

∑
i(1−

1
pi

)

where b is the number of boundary components, a is twice its genus (if orientable)
or its nonorientable genus (otherwise), and {pi} are the multiplicities of the singular
fibres, then we can see that a + (b− 1) +

∑
i(1−

1
pi

) = 1. As b ≥ 1, each of these
terms is nonnegative.

That M contains a horizontal Möbius band is equivalent to the statement that
the base orbifold G of M is covered by a Möbius band. We can work by cases: if
a > 0, we have a Möbius band with no singular fibres. If b > 1, then b must be
2 so we have an annulus, which the Möbius band does not cover but the annulus
(trivially) does. Otherwise, a = 0 and b = 1, so G is a disc with some singular fibres
with multiplicities such that

∑
i(1−

1
pi

) = 1. For each p > 1, we have 1
2 ≤ 1− 1

p < 1,

so the only solution is two singular fibres, each with multiplicity two. �

Lemma 5.5. Let F be a connected non-duplicate normal surface in a subtetrahedral
split handle structure H. If F = G1 +G2 then neither G1 nor G2 is both connected
and duplicate.

Proof. If G1 were connected and duplicate, which is to say that there was a normal
isotopy taking it to the boundary of a collar of a forbidden region component, then
this isotopy would also make it disjoint from G2, so then F = G1 +G2 would have
two components. �

Lemma 5.6. Let M be a Seifert fibered space with non-empty boundary, other than
the solid torus. Let H be a subtetrahedral split handle structure for M where the
forbidden region I (if it is non-empty) is a collection of vertical annuli. Then H
contains a fundamental normal surface, disjoint from the forbidden region, that is
either an essential Möbius band or an essential non-duplicate annulus. Further-
more, if M is not homeomorphic to T 2 × I or K ×∼ I or I is not empty, then this
surface is vertical with respect to the Seifert fibered structure.

Proof. We have already proved this in Lemma 5.3 if M has a multiplicity two
singular fibre and is not K ×∼ I. If M does have a multiplicity two singular fibre,
then, we can assume that it is K ×∼ I with the [D2, 1/2, 1/2] Seifert fibration.

Let A be an incompressible ∂-incompressible annulus or Möbius band in M that
is disjoint from the forbidden region and is not isotopic into it. This exists as M
is not the solid torus. By Proposition A.6 A has a normal representative F . As A
is incompressible, it cannot be isotoped to be inside a single handle, so we can let
F be of minimal weight in the admissible isotopy class of A (that is, up to isotopy
fixing I). Suppose that F = G1+G2 as a non-trivial sum of normal surfaces, where
we choose G1 and G2 to minimise |G1 ∩G2|. By Proposition A.16, G1 and G2 are
also incompressible and ∂-incompressible, and have Euler characteristic at most 0.
If (say) G1 has multiple connected components, so F = G′1 + G′′1 + G2, then by
resolving the sum G′′1 +G2 (which we note does not add any curves of intersection
with G′1) we get F = G′1 + (G′′1 +G2), where |G1 ∩G2| > |G′1 ∩ (G′′1 +G2)|, so both
G1 and G2 must be connected. As χ(G1) + χ(G2) = χ(A) = 0, both have Euler
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characteristic exactly zero – that is, each component is an annulus, Möbius band,
Klein bottle or torus. By Lemma 5.5 neither is duplicate.

If one is closed, the other, say G1, has the same boundary as A, so is an essential
non-duplicate annulus or Möbius band also. If both are essential annuli, then we
have two essential non-duplicate annuli of smaller weight than A.

If G1 is a Möbius band then by Lemma 3.6 it is either horizontal, in which case
I must be empty and M must be K ×∼ I, or pseudo-vertical so M is again K ×∼ I
with the Seifert structure [D2, 1/2, 1/2].

In any of these cases, we have produced an incompressible and ∂-incompressible
non-duplicate annulus or Möbius band that is of smaller weight than F , so there is
a fundamental such surface G. If I is not empty then G cannot be horizontal, so
must be (pseudo-)vertical and, if a Möbius band, have an essential vertical double.
Otherwise, if G is horizontal, then by Lemma 5.4 M is homeomorphic to K ×∼ I or
T 2 × I. �

We will use Lemmas 4.18 and 4.19 to prove that we can obtain a complete
collection of these annuli of bounded size. Recall that by Lemma 4.11, cutting
along a normal surface produces another subtetrahedral split handle structure.

Proposition 5.7. There exists a constant cA, which we can take to be 1010
30

, such
that the following holds. Let M be a Seifert fibered space with non-empty boundary,
other than the solid torus. Let H be a subtetrahedral handle structure for M that is
dual to a triangulation T such that the intersection of each tetrahedron of T with
∂M is connected and contractible. There is a maximal collection of disjoint normal

essential annuli in H, so that no two are isotopic, of total size at most c
|H|2
A . If M

is not T 2 × I or K ×∼ I, then these annuli are vertical.

Proof. By Lemma 4.11 H can be viewed as a subtetrahedral split handle struc-
ture with empty forbidden region. Then by Lemma 5.6 there is a fundamental
normal surface F in H that is either an essential Möbius band or an essential non-
duplicate annulus. Note that by Lemma 4.11 H\\F is also a subtetrahedral split
handle structure. If M was not T 2× I or K ×∼ I, then we can take the first annulus
to be vertical, so the forbidden region of H\\F will be a non-empty collection of
vertical annuli. We can then continue to apply Lemma 5.6 to generate a collection
of disjoint normal incompressible and ∂-incompressible annuli Ai and handle struc-
tures Hi+1 = Hi\\Ai, where the annulus Ai is fundamental in Hi or is the double
of a fundamental surface. This is almost the situation of Corollary 4.20, save that
some surfaces may be doubles of fundamental surfaces, rather than being funda-

mental themselves. Each annulus (by Lemma 4.18) is thus of size at most 2c
|Hi|
F

where cF = 274+74·13·13!, so is of size at most 275+74·13·13!|Hi|. By Lemma 4.19 then

the size of the whole collection is at most c
(75+74·13·13!)|H|213|H|
B where we can set

cB to be 2182·13!. (In particular, the collection is finite.) Thus the total bound is at

most c
|H|2
A where we can set

cA = 2182·13!·2
13·(75+74·13·13!).

This is a maximal collection of non-duplicate vertical essential annuli; there is thus
a subset of it that is a maximal collection of non-isotopic vertical essential annuli.

One can compute that cA < 1010
30

.
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If M is T 2 × I, then by Proposition 3.3 any essential annulus in T 2 × I is γ × I
for some essential curve γ in T 2, and then the complement of this annulus is a solid
torus with two parallel annuli as its forbidden region, so there are no further isotopy
classes of essential annuli. If M is K×∼ I, it has a Seifert fibered structure as S×∼ S1,
where S is the Möbius band. An essential annulus is either horizontal or vertical. If
horizontal, it separates M into two copies of S×∼ I, which are each homeomorphic to
a solid torus with a single annulus as their forbidden region so contain no essential
annuli that are not isotopic to the one we already cut along. If vertical, it cuts
M into a single solid torus, with two parallel annuli as its forbidden region, so
again there are no further annuli. In these cases we took a single fundamental

annulus, or double of a fundamental Möbius band, which is of size at most 2c
|H|
F

for cF = 274+74·13·13! by Lemma 4.18, which is certainly smaller than bound on cA
we have given. �

Lemma 5.8. Let H be a handle structure for an irreducible ∂-irreducible 3-manifold
M that is dual to a triangulation T such that the intersection of each tetrahedron of
T with ∂M is connected and contractible. Let F be a non-duplicate incompressible
∂-incompressible normal surface in H. There is a normal surface F ′ in T that is
isotopic to F such that the weight of F ′ (that is, its number of intersections with
the 1-skeleton) is at most 16|T |s(F ).

Proof. By Lemma 4.11 H is a subtetrahedral split handle structure. Each elemen-
tary disc of F runs over at most four bridges, so its number of intersections with the
1-skeleton of T will be at most four. The barrier to directly including F into T is
that an elementary disc in a subtetrahedral handle does not necessarily correspond
to one in the dual tetrahedron: the ones that do not are the ones that run over
vertices in the boundary of T . It suffices then to perturb F enough that it is trans-
verse to T , without increasing its weight too much, as then, as F is incompressible
and ∂-incompressible, we can normalise it which does not increase its weight.

Map F into T by sending each elementary disc of F to a disc in a tetrahedron of
T that is transverse to the triangulation except that it may run over vertices in ∂T .
Each elementary disc of F ran over at most four bridges, so this surface intersects
the 1-skeleton of T in at most 4s(F ) points. At each vertex in ∂T , consider its
link L, which is a disc as M is a manifold. The elementary discs of F intersect L
in a set of disjoint arcs. Pick a coherent choice of direction transverse to each arc,
so that no two arcs point towards each other. At each arc, replace the portion of
F that runs through the vertex with the subset of L in the chosen direction. We
thus obtain a surface F ′ isotopic to F and transverse to the triangulation. As L
intersects each edge of T at most twice, this operation adds at most two points of
intersection of each elementary disc with each edge of T . There are at most 6|T |
edges so the weight of F ′ is at most (4 + 12|T |)s(F ). Normalising F ′ produces a
surface isotopic to F and of no greater weight than F ′. �

Corollary 5.9. There exists a constant cT , which we can take to be 1010
36

, such
that the following holds. Let T be a triangulation of a Seifert fibered space M with
non-empty boundary, other than the solid torus. There is a collection of disjoint
normal essential annuli in T , such that their complement is a collection of solid

tori, of total weight at most c
|T |2
T . We can take these annuli to be vertical so long

as M is not T 2 × I or K ×∼ I.
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Proof. Consider the handle structure H that is dual to the 1st barycentric subdi-
vision of T , T (1), which contains 24|T | tetrahedra. In T (1) the intersection of each
tetrahedron with ∂M is connected and contractible. Thus H satisfies the hypothe-
ses of Proposition 5.7 so there is a maximal collection C of disjoint normal essential

annuli in H, such that no two are isotopic, of total size at most c
|H|2
A , and so that

if M is not T 2 × I or K ×∼ I then these annuli are vertical. We can now apply
Lemma 5.8 to this collection C to obtain an isotopic set of normal surfaces in T (2)

of weight at most 16 · 242|T |c24
4|T |2

A ≤ c
2·244|T |2
A where cA < 1010

30

. We can thus

set cT to be c2·24
4

A , which gives the desired bound.
Now, if M is T 2 × I or K ×∼ I we took a single annulus that cut M into one

or two solid tori, so let this be the minimal collection. Otherwise, all the annuli
are vertical. They lie over essential arcs in the base orbifold of M . If there are n
singular fibres, there must be n annuli separating neighbourhoods of singulars fibre
from the remainder of M . Consider the dual graph to the rest of the collection: it
has a vertex for each region of M\\C, and an edge for each annulus, connecting the
vertices of the regions it bounds. Take the complement of a spanning tree of this
dual graph. This collection of annuli will cut the remainder of the orbifold into a
single disc, and so will cut the remainder of M into a single solid torus. Take these
annuli as well as the ones that cut off singular fibre neighbourhoods as the minimal
collection. �

6. Recognising circle bundles over surfaces with boundary is in NP

Lemma 6.1. Let T be a triangulation of the solid torus. Then there is a funda-
mental normal meridian disc in T and a normal curve in ∂T of weight at most
exponential in |T | that intersects the disc once.

Proof. Corollary 6.4 of [12] tells us that if M is ∂-irreducible then there is a vertex
normal essential disc, and the only essential disc in S1 ×D2 is the meridian disc.
Take a normal curve γ in ∂T that intersects this meridian disc once. If γ = α1 +α2

as a normal sum, then one of the αi must also intersect the disc once, so there is a
fundamental normal curve in the triangulation on the boundary that satisfies this
property. �

To determine the slope of curves in a torus we will need to compute their algebraic
intersections quickly. A normal curve is not equipped with an orientation, so the
algebraic intersection does not come with a sign; however, if we have more than
two (non-disjoint) curves, then picking a sign for i(α, β) and i(β, γ) determines
that of i(α, γ). As in [3, §6], we can represent an oriented normal curve by giving
its algebraic intersection number with each (oriented) edge of the triangulation.
We will use the following result to assign orientations to normal curves and then
compute their algebraic intersections. Schaefer, Sedgwick and Štefankovič use a
similar approach to the one we use here in §5.6 of [26]; the form of the result
givenin [3], though, is most convenient for our purposes.

Proposition 6.2 (Corollary 6.11 [3]). Let M be a compact 2-manifold with trian-
gulation T . Let γ be a connected normal curve in T , represented by its unsigned
normal coordinates. There is an algorithm to compute the signed normal coordi-
nates of some orientation of γ in time polynomial in |T | and log(s(γ)), where s(γ)
is the number of normal arcs in γ.
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Corollary 6.3. Let γ1, . . . , γn be a collection of connected normal curves in a
triangulation T of a compact 2-manifold, with an orientation of the surface that is
given by an orientation of each triangle. We can compute the algebraic intersections
of each pair of curves for some (fixed) choice of curve orientations in polynomial
time in |T | and

∑n
i=1 log(|γi|).

Proof. Compute the signed normal coordinates of each curve and thus fix orienta-
tions on them. Fix a pair of curves, and for each edge of T , arbitrarily assign one
end of the edge to each curve. Isotope the curve so that it intersects the edge only
in that half, and draw each elementary segment as a straight line arc within each
triangle. As described in [3, Corr. 6.12] and [26], we can then compute the number
of positive and negative crossings of the pair within each triangle in constant time
by multiplying at most six pairs of signed normal coordinates. �

Thanks to work of Agol, Hass and Thurston, there is a polynomial time algorithm
that, given a normal surface in a triangulation as a vector, computes its homeomor-
phism type. Lackenby, Haraway and Hoffman use it to quickly cut triangulations
along normal surfaces.

Proposition 6.4 (Corollary 17 [1]). Let M be a 3-manifold with a triangulation T
and let F be a normal surface in M . There is a procedure for counting the number
of components of F and determining the topology of each component that runs in
time polynomial in |T | logw(F ).

Proposition 6.5 (Proposition 13 [6]). There is an algorithm that takes as its
input both a compact connected orientable triangulation T and a connected normal
surface S in T given as a vector, and provides as its output a triangulation of an
exterior of S whose size is bounded by a polynomial in |T |, logw(S), and the Euler
characteristic of S, and runs in time polynomial in those same three parameters.

Corollary 6.6. There is an algorithm that takes as its input both a compact con-
nected orientable triangulation T of a 3-manifold M and a (possibly disconnected)
normal surface S in T given as a vector, such that no two components of S are
normally isotopic, and provides as its output a triangulation of M\\S whose size is
bounded by a polynomial in |T |, logw(S), and the minimal Euler characteristic of
the components of S, and runs in time polynomial in those same three parameters.
It also produces normal surface vectors for each component of the boundary of the
copy of the double of S in ∂(M\\S).

Proof. Note that by Kneser-Haken finiteness there are at most 61|T | components
of S. Cut along S, applying Proposition 6.5 at each step. The construction of the
triangulation in Proposition 6.5 follows Lackenby’s argument in Theorem 9.2 of [17],
which is in the setting of sutured manifolds, and keeping track of the boundary of
the surface we cut along rather than of some new sutures does not significantly
modify the argument. We perform O(|T |) steps, each of which takes time that is
at most polynomial in |T |, logw(S) and the minimal Euler characteristic of the
components of S. �

Proposition 6.7. Deciding whether a 3-manfold M is an orientable circle bundle
over a surface with non-empty boundary is in NP, and giving the homeomorphism
type of the surface is in FNP. Furthermore, unless M ∼= K ×∼ I or T 2 × I, there
exists a normal section and one normal fibre on each boundary component, such
that these properties can be certified in time polynomial in |T |.
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Haraway and Hoffman have previously shown that certifying S ×∼ S1 ∼= K ×∼ I
and A× S1 ∼= S ×∼ I is in NP [6].

Proof of Proposition 6.7. Let T be a triangulation of M . The data given in the
certificate is the following:

(1) A compatible orientation of each tetrahedron;
(2) If M is the solid torus, a fundamental normal disc and a curve in ∂M

intersecting it once;
(3) If M is T 2 × I, a normal annulus F of weight at most exponential in a

polynomial of |T |, a triangulation of M\\F constructed using Corollary 6.6,
and a fundamental normal essential disc in this triangulation;

(4) If M is K ×∼ I (which we consider to have Seifert structure S ×∼ S1), where
S is the Möbius band, a fundamental annulus F , and:
(a) If the fundamental annulus is horizontal, the triangulation of M\\F ∼=

S1 × D2 t S1 × D2 from Corollary 6.6 and a fundamental normal
essential disc in each component of the result;

(b) If the fundamental annulus is vertical, the triangulation of M\\F ∼=
S1 × D2 from Corollary 6.6 and a fundamental normal essential disc
in it;

(5) Otherwise:
(a) a collection of non-isotopic normal vertical annuli F , of total weight

at most exponential in |T |2, whose complement is a solid torus;
(b) the triangulation of M\\F from Corollary 6.6;
(c) a fundamental normal essential disc in this triangulation of M\\F ;
(d) a fundamental normal section.

Claim 1: The data of this certificate exists and has size bounded by a polynomial
in |T |.
Proof: When M is a solid torus, the data exists by Lemma 6.1.

When M is T 2× I, by Lemma 5.6 there is a normal annulus of the required size.
Corollary 6.6 allows us to construct a triangulation of M\\F of polynomial size in
|T | as the weight of F is at most exponential in |T |. By Lemma 6.1 then there is
a fundamental normal essential disc in this new triangulation.

When M is K×∼ I, by Lemma 5.6 there is a fundamental normal essential annulus,
which (as discussed in the proof of Proposition 5.7) is either horizontal and cuts
M into two solid tori, or is vertical and cuts it into one solid torus. Either way
we can use Corollary 6.6 to construct a triangulation of its complement that is of
polynomial size in |T |, and by Lemma 6.1 there is a fundamental normal essential
disc in each component of this new triangulation.

In the general case, by Corollary 5.9 there is a collection of vertical essential

annuli C in T , of total weight at most c
|T |2
T , whose complement is a single solid torus.

By Corollary 6.6 we can construct a triangulation of their complement, recording
the boundary of C, that is of size at most polynomial in |T |. By Lemma 6.1 there is
a fundamental normal essential disc in this new triangulation. By Proposition 3.7
there is a fundamental section in M . �
Claim 2: The homeomorphism type of M can be verified in polynomial time.
Proof: Check that M has boundary; that is, that some face of the triangulation is
not identified with any other. Check that the given orientations of the tetrahedra
are compatible, and thus certify that M is orientable.
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If M is a solid torus, it is known by work of Ivanov that recognising it is in
NP [10]. To certify the data from Lemma 6.1, check that the given surface is in
fact a disc using Proposition 6.4 then check (using Corollary 6.3) that the algebraic
intersection number of the curve and the boundary of the disc, given as normal
curves, is ±1. We thus know that the curve and disc are essential, so must be a
fibre and meridian disc.

If M is T 2× I, certify that F is an annulus using Proposition 6.4. Apply Corol-
lary 6.6 to produce a triangulation of M\\F and normal curves in the triangulation
from ∂F . We have already seen that we can certify that M\\F is a solid torus.
Compute the algebraic intersection numbers of the boundary curves from F with
the boundary of the meridian disc, which (as the meridian curve is from a funda-
mental normal surface so is of at most exponential weight in |T |2) we can do in
polynomial time by Corollary 6.3. Verify that they are each ±1, so the core curve
of F in M\\F is a longitude. The mapping class group of the annulus up to non-
∂-preserving isotopy has two elements: the class of the identity, and the class that
exchanges the two boundary components, so M is either (in the first case) T 2 × I
or (in the latter) K ×∼ I. The first homology of T 2 × I is Z2 and that of K ×∼ I is
Z × Z2, so it suffices to compute the homology of M , which, as the dimension of
M is fixed, can be done in polynomial time by work of Iliopoulos [9] as explained
in [13].

Suppose M is K×∼ I ∼= S×∼S1 where S is the Möbius band. If the essential annulus
F is horizontal it covers the Möbius band, so as it has two boundary components
it is a degree two cover and separates M into two copies of S ×∼ I (where it is the
horizontal boundary of this bundle), which is the solid torus. As in the T 2 × I
case, we can efficiently certify that this fundamental surface separates M into two
solid tori. We can use the normal curve vectors for the boundary of F and the
boundaries of the meridian discs to verify with Corollary 6.3 that these curves have
algebraic intersection number ±2. Up to choice of coordinates there is only one
curve on the boundary of the solid torus that intersects a meridian disc twice, so
this is enough to certify that T is a triangulation of K ×∼ I.

If F is vertical, it sits over a spanning arc in the Möbius band and cuts M into
a single solid torus. As in the T 2 × I case, certify that M\\F is a solid torus, and
produce a normal vector for a meridian curve. Compute the algebraic intersection
numbers of the boundary of the two copies of F with this meridian curve. We find
that they are ±1 and by the same homology computation as in the T 2 × I case we
can certify that M is K ×∼ I.

We are left with the general case. By Proposition 6.4 we can quickly check
that each surface in F is an annulus and compute the number of components n
in F . As we have already described, we can certify that M\\F is a solid torus
and that the given surface is indeed a meridian disc, and record the corresponding
meridian curve. Compute the intersection number of each annulus boundary and
this meridian curve (using Corollary 6.3) to certify that the annulus core curves are
longitudes in the solid torus. Now, when we glue up the annuli we will get a circle
bundle over a surface Φ. This surface has Euler characteristic 1− n. Note that as
M is not a circle bundle over a disc, annulus or Möbius band, 1− n is negative.

Let Σ be the normal surface that we claim is a normal section. Verify (using
Proposition 6.4) that χ(Σ) = 1−n. Compute algebraic intersection numbers (using
Corollary 6.3) to certify that the boundary curve of Σ intersects each boundary
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curve of each annulus in A exactly once, which implies that Σ intersects each
annulus in one spanning arc and possibly some trivial curves. This shows that,
after compressions and ∂-compressions (which increase Euler characteristic), Σ is
horizontal; as χ(Φ) < 0 and χ(Σ) = χ(Φ), Σ must be a degree one horizontal
surface: that is, a section. �

For the collection of fibres, we have a normal section in the surface bundle and
a complete collection of vertical essential annuli. Take a minimal collection of
essential annuli that link all the boundary components of M ′, and take one annulus
boundary component on each boundary component of M . �

7. Recognising Seifert fibered spaces with boundary is in NP

Proposition 7.1. Deciding if a 3-manifold M with triangulation T is a Seifert
fibered space with only multiplicity two singular fibres and non-empty boundary,
other than S1 ×D2, S1 × S1 × I and K ×∼ I, is in NP. When M is such a Seifert
fibered space, giving its Seifert data is in FNP and there is a degree two normal
horizontal surface and one normal fibre on each boundary component such that these
properties can be certified in polynomial time.

Proof. The data given in the certificate is the following:

(1) the Seifert data of M ;
(2) two collections of disjoint normal essential vertical annuli C in T , of total

weight at most c|T |
2

, for a fixed constant c, where the complement of C is
the union of a solid torus neighbourhood of each singular fibre and a circle
bundle over a surface;

(3) a triangulation of T \\C from Corollary 6.6, with a record of the normal
curves from the boundaries of the components of C;

(4) the data from the certificate in Proposition 6.7 for T \\C;
(5) a fundamental normal essential disc in each solid torus component of T \\C;
(6) a degree two horizontal fundamental normal surface F in T ;

Claim 1: The data of this certificate exists and is of size at most polynomial in
|T |.
Proof: Corollary 5.9 gives us the collection of normal vertical annuli. Use Corol-
lary 6.6 to build the required triangulation, and then by Lemma 6.1 we can find
a fundamental normal essential disc in each solid torus component of this triangu-
lation. Proposition 6.7 gives us the certificate for T \\C. By Proposition 3.7, the
desired degree two horizontal fundamental normal surface exists. �
Claim 2: The homeomorphism type of M can be verified from the certificate in
polynomial time.
Proof: As in Proposition 6.7, certify that M has boundary and is orientable.

Build the triangulation of T \\C using Corollary 6.6, verifying that it agrees
with the one in the certificate. We can then certify that all but one of the resulting
pieces are solid tori by work of Ivanov [10], and certify the homeomorphism type of
the remaining piece M ′ using Proposition 6.7. By computing algebraic intersection
numbers using Corollary 6.3, we can check that for each of the solid torus meridian
discs, each annulus (algebraically) intersects it twice or not at all. We thus know
that M is a copy of M ′ with solid tori glued on by gluing a (1, 2) slope curve in
the boundary of the solid torus to a fibre of M ′; this is enough to certify that these
solid tori are neighbourhoods of singular fibres of multiplicity two. �
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We know that the boundary curves of the annuli are fibres by construction, so
take one on each boundary component. It remains to certify that F is a degree two
horizontal surface. Check that the algebraic intersection number of ∂F with each
annulus is ±2 using Corollary 6.3, and deduce that F compresses and ∂-compresses
to a degree two horizontal surface by Lemma 3.6, so χ(F ) ≤ 2χ(Σ)−n. Now check
that χ(F ) = 2χ(Σ)− n, so we could not have done any compressions or boundary
compressions since they increase Euler characteristic. �

We are now almost ready to prove these recognition results for general Seifert
fibered spaces with boundary: that is, when we have singular fibres of multiplicities
other than two. We need two more results: a theorem from previous work of the
author and a result about computing singular fibre data in Seifert fibered spaces.

Theorem 7.2 (Theorem 1.2 [11]). Let M be a Seifert fibered space with non-empty
boundary and let T be a (material) triangulation of M . The collection of singular
fibres of M that are not of multiplicity two have disjoint simplicial representatives in
T (79), the 79th barycentric subdivision of T . In T (82), these simplicial singular fibres
have disjoint simplicial solid torus neighbourhoods such that there is a simplicial
meridian curve of length 48 for each such neighbourhood.

Lemma 7.3. Let M be an oriented Seifert fibered space with n of its singular fibres
drilled out. Let F be a degree k horizontal surface in M , and let ηi, 1 ≤ i ≤ n
be the collection of its curves of intersection with the boundary component arising
drilling out the ith singular fibre. Let γi, 1 ≤ i ≤ n, be a regular fibre on each of
these boundary components. Pick orientations of ηi and γi such that the algebraic
intersection number i(ηi, γi) is positive with respect to the orientation of ∂M induced
by the orientation of M . Then if µi is a meridian from the drilled out solid torus,
the Seifert data of this singular fibre q/p (with respect to this orientation of M and
the basis of H1(∂M,Z) induced by [ 1kηi] and γi for each i) is (i(ηi, µi)/k)/i(γi, µi).

Proof. Note that if we flip the orientation of both ηi and γi, this ratio of intersection
numbers does not change sign.

Note that ηi is k copies of a curve, and ( 1
kηi, γi) is a positive basis for the homol-

ogy of this torus, with its induced orientation. By the definition of the construction
of Seifert fibered spaces (for example, see [20, Defn. 10.3.1]), a (pi, qi) singular fibre
is when the meridian curve is pi

k ηi + qiγi. �

Recall the results we wish to prove.

Theorem 1.1. The problem Seifert fibered space with boundary recog-
nition is in NP.

Theorem 1.2. The problem naming Seifert fibered with boundary is in
FNP.

Proof of Theorems 1.1 and 1.2. Let M be a Seifert fibered space with non-empty
boundary. Our certificate will be of the following form. If M is a circle bundle
over a surface or a Seifert fibered space with only multiplicity two singular fibres
it will be the relevant data from Proposition 6.7 or Proposition 7.1, respectively.
Otherwise, it will be:

(1) the Seifert data of M ;
(2) a compatible orientation of each tetrahedron of T ;
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(3) the triangulation T (82), constructed by subdividing each tetrahedron of T
in the order given;

(4) the non-multiplicity-two singular fibres in T (82), a solid torus neighbour-
hood of each one, a meridian disc for it with boundary of length 48, a
longitude curve in its boundary that intersects the meridian once, a trian-
gulation T ′ of T (82) with these neighbourhoods of singular fibres removed
and length 48 meridian curves marked and a compatible choice of orienta-
tions of the tetrahedra of T ′;

(5) if there are singular fibres of multiplicity two, the certificate from Proposi-
tion 7.1 for T ′, or otherwise, the certificate from Proposition 6.7 for T ′.

It is straightforward to see that the certificate exists, as giving a triangulation
of T (82) is constructive, and Theorem 7.2 gives us the required singular fibre neigh-
bourhoods.

To verify the certificate, first, as discussed in the proof of Proposition 6.7, check
that M is orientable and has boundary.

Construct T (82) by barycentrically subdividing the tetrahedra in order and verify
that it agrees with the given triangulation. Certify that the removed regions are
solid tori using Proposition 6.7 and use Proposition 6.4 to verify that the given
meridian discs are indeed discs. Check that the longitude intersects the meridian
curve once for each singular fibre neighbourhood using Corollary 6.3, thus certifying
that the given meridian discs are essential.

Note that T ′ 6∼= K ×∼ I as M ′ has more than one boundary component. Also,
T ′ 6∼= T 2 × I as the only Seifert fibered structure for T 2 × I is as A× S1, where A
is the annulus, but then we can only have removed one singular fibre, so M was a
solid torus to begin with. As we have the data of Proposition 6.7 or Proposition 7.1
to certify the Seifert data of T ′, since T ′ 6∼= K ×∼ I or T 2 × I, take the normal
horizontal surface and complete collection of fibres in the boundary contained in

this certificate. Note that the weight of this surface and annulus is at most c
|T ′|2
T ,

where cT is at most 1010
36

. In each boundary component of M ′ that bounds a
singular fibre, consider the boundary of the horizontal surface, η, and the boundary

of a normal vertical annulus fibre, γ, each of whose length is at most c
|T |2
T . Push

the simplicial meridian ν off the 1-skeleton to get a normal meridian µ. The length
of µ is at most the length of ν plus the total valence of the vertices of this boundary
torus: that is, at most three times the number of edges in this boundary torus,
which is at most 3 · 2482 · 6|T |.

Check that the given orientation of the tetrahedra of T ′ is in fact consistent and
compute the orientation of each boundary triangle induced by it. By Corollary 6.3,
we can arbitrarily orient each of these three curves and then compute i(η, γ) in
polynomial time in the original input, with respect to the induced orientation of
the boundary triangles. Set the orientation of η such that i(η, γ) is positive and
then compute q′ = i(µ, η) and p = i(µ, γ). If T ′ had multiplicity two fibres, note

that η is two copies of a horizontal curve and intersects γ twice, so set q = q′

i(η,γ) .

By Lemma 7.3 this singular fibre has Seifert data q/p. With the certificate for M ′,
this certifies the homeomorphism type of M , and we can check that this matches
the given Seifert data. �
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Appendix A. Normal surfaces in split handle structures

A.1. Normalisation.

Lemma A.1. Let S be an incompressible (connected) surface in the orientable I-

bundle Σ×(∼)I, other than a trivial disc or sphere, that is disjoint from the horizontal
boundary and does not admit any ∂-compression discs with respect to the vertical

boundary of Σ×(∼)I. Then S is isotopic to Σ× {∗} or its double cover.

Proof. First, suppose that Σ is a disc. Then as Σ × I is a ball (so S is two-sided)
and S is incompressible and hence π1-injective, S is a sphere or a disc. If it is a
sphere, it is a trivial one. If ∂S contains a trivial curve in the vertical boundary,
then S must be a boundary-parallel disc. Thus S is a disc and its boundary is
essential in the vertical boundary, so it is isotopic to Σ× {∗}.

For the general case, suppose that Σ has boundary. Decompose Σ into one
0-handle, which we view as a polygon, and some number of 1-handles, which we

view as rectangles. Above each edge of the 0-handle and 1-handles in Σ ×(∼)I is a

quadrilateral with two boundary edges in the vertical boundary of Σ×(∼)I and two in
the horizontal boundary. Isotope S so that it is transverse to these quadrilaterals
and thus intersects each quadrilateral in a collection of arcs and closed curves. As S
is incompressible, each of these closed curves bounds a disc in S, so by minimising
the number of components of intersection between S and the quadrilaterals we
can assume that the intersection is only of arcs. Note that S is disjoint from the
horizontal boundary, so each of these arcs starts and ends on either the same or
different vertical boundary arcs of a quadrilateral. If one starts and ends on the
same vertical boundary arc, by taking an outermost such arc we can obtain a ∂-
compression disc for S with respect to the vertical boundary, so by an isotopy we
can remove this arc. Thus up to isotopy S intersects each quadrilateral in arcs that
are transverse to the product structure.

Consider one of the handles of Σ, H, which is a disc. Consider the intersection

of S with H ×(∼)I ∼= D2 × I in Σ ×(∼)I. We can assume (by minimising the number
of components of intersection between S and the quadrilaterals) that S is incom-
pressible in this copy of D2 × I, so as we have already discussed, each component

of it is a (trivial) sphere (which we have ruled out) or disc. The boundary of H ×(∼)I
has three parts: its horizontal boundary, from which S is disjoint, quadrilaterals,

and pieces of ∂v(Σ ×
(∼)
I). For similar reasoning as with the quadrilaterals, up to

isotopy S also intersects the vertical boundary pieces in arcs that are transverse to

the product structure. Thus the boundary of each disc of S ∩H ×(∼)I is an essential

curve in ∂v(H ×
(∼)
I). Thus S intersects H ×(∼)I in a collection of horizontal discs for

each H, and so intersects all of Σ ×(∼)I in either Σ × {∗} or (if Σ is nonorientable)
possibly Σ×∼ S0.

If Σ is closed, let D be a disc of Σ. Isotope S to minimise the number of
components of S ∩ ∂(D × I). The intersection of S with D × I is incompressible
since otherwise, as S is incompressible, it would not be minimal. For the same
reason S ∩ (D × I) contains no spheres or trivial discs. By the first part of this
proof, S ∩ (D × I) is a collection of discs of the form D × {∗}. If S ∩ (Σ−D)× I
admits a ∂-compression disc with respect to the vertical boundary, we can use it
to isotope S to reduce |S ∩ ∂(D × I)|. Thus by the previous part of the proof,
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S ∩ (Σ−D)× I is isotopic to (Σ−D)×{∗} or its double cover, which gives us the
result. �

We wish to modify an arbitrary surface F in M , whose boundary is disjoint
from the forbidden region, by a series of admissible isotopies and normalisation
moves such that the result is normal (but may not be isotopic to F ). Compare
the following procedure to the proof of Theorem 3.4.7 in [21]. The only substantial
difference is in Move 2, as we need to consider parallelity pieces that are more
complicated than 2-handles.

Procedure A.2 (Normalisation). Let F be a properly-embedded surface in M that
is disjoint from the forbidden region. The weight of F is w(F ) = (p(F ), b(F ), |F ∩
∂M |), which we will sort lexicographically, where p(F ), the plate degree, is |F ∩
(∂H2∪∂HP)| and b(F ), the beam degree, is |F ∩H1|. We will see in Proposition A.3
that almost all the normalisation moves which follow will reduce w(F ). All isotopies
in these moves are required to be admissible.

The normalisation procedure is to perform Move 1 once, and then repeat Moves
2-7 in sequence as long as possible.

Move 1. Note that the boundary of the forbidden region I is disjoint from the
boundaries of the 2-handles. (Admissibly) isotope F so that F is transverse to the
handle structure and ∂F is disjoint from the horizontal boundaries of the 2-handles.
Each 3-handle contains an open ball that is disjoint from F , so by expanding these
balls, we can isotope F to be disjoint from the 3-handles. Discard any components
of F that are entirely contained in a parallelity piece.

Move 2. Consider each component H ∼= Σ ×(∼) I of H2 ∪ HP . If any of the
components of F ∩ ∂H are trivial curves in the vertical boundary, compress F
along the discs in ∂H that these curves bound and isotope this part of F off ∂H.
Similarly, if F∩H admits a compression disc, compress F along it. If ∂vH intersects
∂M (in which case H is a parallelity piece), and F ∩ H admits a ∂-compression
disc D that is disjoint from the horizontal boundary – that is, where the arc of ∂D
in ∂H, α, is in ∂vH – then compress along it. Now, as each component of F ∩ ∂H
is an essential curve in ∂vH, up to an isotopy supported in a collar of ∂vH within
H, we can arrange that each of these curves is transverse to the induced I-bundle
structure on ∂vH.

If we performed a ∂-compression, repeat the first two steps of this move. Finally,
discard any components of F ∩ (H2 ∪HP) that are spheres or ∂vH-parallel discs.

Move 3. For each 1-handle D1 ×D2, take a disc D = {∗} ×D2, transverse to
F , that minimises the number of components in D ∩ F . We can blow a regular
neighbourhood of D out to be the whole 1-handle.

Move 4. If any component of intersection of F with a 1-handle is a tube S1×I,
compress it and isotope the two resulting discs out of the 1-handle. Similarly, if
any component of intersection with a 1-handle D1×D2 is a disc whose intersection
with D1 × ∂D2 is contained in a single region of (∂M − I) ∩ (D1 × D2), we can
∂-compress this tunnel and isotope the pieces out of the 1-handle.

Move 5. Compress any compressible pieces of F ∩ H0 and discard any trivial
spheres in the 0-handles.

Move 6. If F intersects a lake in a trivial curve, compress it and throw away
the resulting ∂-parallel disc. If F intersects a lake in an arc that starts and ends
on the same component of the intersection of the lake with an island, by an isotopy
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(again as ∂I intersects the cell structure on the boundary in a normal curve) push
this piece F off the lake and through the 1-handle.

Move 7. If a disc of F ∩H0 crosses a bridge twice or a bridge and an adjacent
lake, isotope the portion of disk between them into the bridge. If it crosses a
lake twice, ∂-compress the resulting tunnel along both of its intersections with the
boundary of the lake.

Proposition A.3. Let F be a properly-embedded surface in a split handle structure
H. Applying Procedure A.2 terminates and the result (if non-empty) is a normal
surface.

Proof. After Move 1 F satisfies condition 1 of Definition 4.4. If Move 2 has no
effect, F ∩ H is incompressible and ∂-incompressible with respect to the vertical
boundary, so by Lemma A.1 F satisfies condition 2 of Definition 4.4. If Moves 3
and 4 have no effect then it satisfies condition 4 of Definition 4.4 and condition 1 of
Definition 4.5. After Move 5 it satisfies condition 5 of Definition 4.4. Then Move 6
ensures condition 2 of Definition 4.5 and Move 7 ensures condition 3. As a result,
if no more moves can be performed, then F is normal.

Let the normalisation complexity of F be

(p(F ), b(F ), |F ∩ ∂M |, γ(F ), η(F ), n(F )),

ordered lexicographically, where the new terms are γ(F ) =
∑m
i=1(1− χ(Fi)) where

{Fi} is the collection of connected components of F ∩ H0 that are not spheres,
η(F ) =

∑m
i=1(1 − χ(Fj)) where {Fj} is the collection of connected components

of F ∩ (H2 ∪ HP) that are not spheres, and n(F ) is the number of connected
components of F . We will show that each of Moves 2-7 reduces the normalisation
complexity of F .

For Move 2, suppose we perform a ∂-compression on F∩H. AsH is a split handle
structure, if ∂I intersects a component of ∂vH ∩ ∂M then it does so in two curves
or arcs. Thus this component is either contained in I, or (as ∂hH is contained in
I) it intersects I in a neighbourhood of its boundary with the horizontal boundary
of H. If F ∩H admits a ∂-compression disc D that is disjoint from the horizontal
boundary, then let ᾱ be a properly-embedded arc in ∂vH, such that α is a subarc
of it, which is isotopic in ∂vH to one of the I fibres of ∂vH and has minimal
intersection with each of the components of F ∩ ∂vH – that is, it intersects each of
the essential curves in this collection once. This is possible since α runs between
two different components of F ∩ ∂vH; otherwise we would be able to upgrade our
∂-compression disc to a compression disc. Note that |ᾱ ∩ F | is the degree of the
projection map from F ∩ H to Σ. (When Σ is orientable, this is the number of
sheets of F in H.)

The effect of the ∂-compression on F ∩ ∂H is to remove from it ∂α× I and add
to it α×∂I, for some small thickening α× I of α. This reduces |ᾱ∩F | by two, and
thus we see that the number of essential curves in F ∩ ∂vH has reduced by two,
so either p(F ) has reduced or we reduce it in the next step of Move 2. After this
move, F ∩H does not admit any ∂-compression discs with respect to the vertical
boundary of H.

Compressing F along trivial curves in the vertical boundary of H reduces p(F ).
Compressing F ∩H reduces η(F ) and fixes the earlier terms in the normalisation
complexity. We can thus see that we either reduce p(F ) or reduce η(F ) and fix the
earlier terms in the normalisation complexity.
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If Move 3 is non-trivial then it does not increase p(F ) and reduces b(F ), and
the same applies for Move 4. Move 5 does not change p(F ) or b(F ). If there
are compressible pieces then it reduces γ(F ), and otherwise if all the pieces are
2-spheres or discs then it reduces n(F ) and fixes everything else. Move 6 either
reduces |F ∩ ∂M | and does not change p(F ) and b(F ), or fixes p(F ) and reduces
b(F ). Move 7 either decreases p(F ) or fixes it and reduces b(F ). As a result, the
procedure terminates with a normal surface. �

Definition A.4. A properly-embedded disc in a 3-manifold M is essential if its
boundary does not bound a disc in ∂M .

Note that this definition does not change if there is forbidden region.

Lemma A.5. Suppose that M is irreducible with a split handle structure H such
that there is some essential disc in M that avoids the forbidden region. Then there
is a normal essential disc, disjoint from the forbidden region.

Proof. Apply the normalisation procedure to this essential disc D. As M is irre-
ducible and D is (trivially) incompressible, whenever we compress D in the normal-
isation procedure we will produce a surface admissibly isotopic to D and a trivial
sphere, which we can discard. Whenever we ∂-compress D we will produce two
discs, both of which are disjoint from the forbidden region. At least one of them
must be essential as ∂D does not bound a disc in ∂M . Discard the other. �

Proposition A.6. Let F be an incompressible ∂-incompressible properly-embedded
surface in an irreducible ∂-irreducible manifold M with split handle structure H,
disjoint from the forbidden region, such that no component is a trivial sphere or
disc or is entirely contained in a parallelity piece. Then F is admissibly isotopic to
a normal surface.

Proof. Apply the normalisation procedure to F . As F is incompressible and ∂-
compressible and M is irreducible and ∂-irreducible, each time we (∂-)compress F
in the normalisation procedure we will produce two components: a surface that is
admissibly isotopic to F and a trivial sphere or disc. Thus we produce a normal
surface admissibly isotopic to F , as well as some collection of trivial spheres and
discs, which we can discard. �

A.2. Subtetrahedral split handle structure combinatorics. We give bounds
on the number of elementary discs types.

Lemma A.7. Let H be a subtetrahedral 0-handle. Let G be its boundary graph in
∂H ∼= S2. Then G contains between one and four islands; each island has at most
three components of intersection with bridges; and if b is the number of bridges of
G, then the number of sutures of G at most 12 − 2b and an island intersecting v
bridges has at most 6− 2v intersections with sutures.

Proof. Consider a semitetrahedral handle structure H and normal surface F such
that H is homeomorphic to one of the pieces of H\\F from some 0-handle H ′ in
H. We can think of forming the pieces of H ′ in the induced split handle structure
as occurring in two steps. First, we cut H ′ along a collection of elementary discs.
This has the effect on the boundary of H ′, which we think of as a graph embedded
in S2, of cutting it along a collection of (separating) curves and filling these holes
in with the forbidden region. Second, we possibly replace some of the 1-handles



32 RECOGNITION OF SEIFERT FIBERED SPACES

with parallelity pieces, in which case (as, if a 1-handle can be given a parallelity
structure, so can any 2-handles it borders) the effect on the boundary graph is to
merge a valence one or two island with the bridge(s) adjacent to it.

Consider cutting along one elementary disc D of F in H ′ at a time. As H is
semitetrahedral, the islands of H ′ are at most trivalent, so ∂D runs through each
island at most once. As ∂D runs through each island or bridge at most once and is
separating, the subgraph of islands and bridges after cutting along it is a subgraph
of the complete graph on four vertices, so after cutting into pieces, there are between
zero and four islands, each of which has valence at most three. We can rule out
the case when the boundary graph is empty as, since the boundary graph of H ′ is
connected, the boundary of any elementary disc runs through at least one island,
so there will be an island in each of the pieces of H ′ that it separates. Turning
1-handles into parallelity handles does not increase the number of islands or their
valence. If all of the 1-handles become parallelity pieces (so there were zero islands)
then in fact the entire 0-handle will become a parallelity piece, so that is impossible.

Let G be the boundary graph of H ′ (containing b bridges) and I its forbidden
region, where we assume that G is connected and contains at most 12− 2b sutures.
The elementary disc boundary ∂D separates ∂H ′ into two components. Pick one
of them, C, to consider. When we cut along D, the other component from ∂H ′

has one less bridge than G for every bridge fully contained in C, one less suture
for each suture in C, and one more suture for each arc of D that runs through a
lake. Thus for the count of sutures it suffices to prove that twice the number of
bridges fully contained in C plus the number of sutures of H ′ in C is at least the
number of arcs in ∂D that run through a lake. Consider one of these arcs α. It
separates the lake into two components, one of which is in C, and each of which is
bordered by at least one bridge or suture. If the component in C is bordered by a
bridge, assign the arc α to that bridge. Note that as the bridge is adjacent to at
most two lakes, and ∂D crosses each lake only once, by doing this we will associate
at most two arcs to the bridge. Also note that as the elementary disc does not run
through an adjacent bridge and lake, this bridge is contained in C. Otherwise, this
component in C is bordered by at least one suture, as α runs between two different
components of intersection of an island and a lake, so assign α to this suture, which
again we see is contained in C. The forbidden region is on the other side of this
suture so we will not assign any other arcs to it. We can thus see that the count is
as we claimed. Turning 1-handles into parallelity regions only reduces the number
of bridges further.

For the final statement, fix an island in H of valence v that intersects at most
6 − 2v sutures. Consider some elementary disc boundary running through this
island. By the same procedure as for the total suture count, assign any new sutures
that are created to a bridge or a suture that intersects the island to get the result:
we start with three adjacent bridges, and add at most two sutures each time we
remove one. �

Notation A.8. Write |H| for the number of 0-handles in H.

Lemma A.9. The total number of bridges and lakes in a subtetrahedral trace 0-
handle H is at most 13.

Proof. From Lemma A.7, each 0-handle contains at most 6 bridges and 12 − 2b
sutures, where b is the number of bridges. The number of lakes from the subgraph
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on islands and bridges alone is at most b+ 1 by an Euler characteristic argument.
Each pair of sutures can increase the number of lakes by one, if they bound a
forbidden region that borders a lake on both sides. (If a suture bounds a forbidden
region that borders a bridge on one side then it does not increase the complexity.)
Thus having sutures does not in fact increase the count, so that maximum count is
6 + 6 + 1 = 13. �

Lemma A.10. If F is a (possibly disconnected) non-duplicate normal surface in a
subtetrahedral split handle structure H then |H\\F | is at most 213|H|.

This is a substantial overestimate, but will do for our purposes.

Proof. We know that H\\F is a split handle structure from Lemma 4.9. Define the
complexity of a subtetrahedral 0-handle H, c(H), to be the sum of the number of
lakes of H and the number of bridges. By Lemma A.9 c(H) is at most 13. Consider
an elementary disc D that separates H into two pieces. After we cut along D and
take the induced handle structure, we obtain at most two 0-handles, H1 and H2.
We show that c(Hi) is at most c(H) for each i, with equality only if the other piece
is a parallelity piece.

As ∂D does not run through a lake or bridge twice, cutting along an edge of D
cannot increase either of the terms in the complexity. The boundary of D separates
the boundary of H and is not a trivial curve, so as it does not run through a bridge
or lake twice or through a bridge and an adjacent lake, it must separate off at
least one forbidden region, bridge, or lake on both sides. If it separates off exactly
one forbidden region and no bridges or lakes on one side, then it is parallel to the
boundary of the forbidden region so one of the Hi is a parallelity handle. If it
separates off more than one forbidden region then two of those forbidden regions
had a lake or bridge between them, so it has reduced the number of lakes. If it
separates off a bridge or lake on one side, then cutting along it reduces the number
of bridges or lakes.

Thus each time we cut a 0-handle H into pieces, if we produce two pieces then
they both have lower complexity than H, so we may obtain at most 213 0-handles
in H\\F . �

Lemma A.11. There are a finite number of subtetrahedral 0-handles up to home-
omorphism, and each of these can contain a finite number of elementary disc types
up to normal isotopy.

Proof. That there are a finite number of types of subtetrahedral 0-handles follows
from the combinatorial constraints of Lemma A.7. An elementary disc D in such a
0-handle H is determined by its boundary ∂D, which is itself completely described
(as the complement of the boundary graph is a collection of discs) by the ordered
list of islands it runs through and, for each, which intersection with a bridge or lake
it enters and leaves by. As it may run through each island, bridge or lake at most
once, there are a finite number of possibilities. �

Notation A.12. Write hH for the number of possible subtetrahedral 0-handle
types, and write dH for the maximum possible number of elementary disc types up
to normal isotopy in a subtetrahedral 0-handle.

Remark A.13. By Lemma A.9, each 0-handle has a total of at most 13 lakes and
bridges, so, by labelling each disc type by the number of edges in it and then the
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order of them, dH is at most 13 · 13!. This bound is far from sharp; enumerating
by hand shows that the true number for a tetrahedral 0-handle (whose boundary
graph is the complete graph on four vertices) is 59 elementary disc types, so the
author would be quite surprised if dH was above 200.

Note that there is a natural inclusion map from surfaces in M\\F , disjoint from
the forbidden region, to surfaces in M , which takes normal surfaces to normal
surfaces.

A.3. Summands of incompressible normal surfaces. In this section all split
handle structures are subtetrahedral. In Matveev’s excellent book [21], he care-
fully lays out the foundations of normal surface theory in the triangulation setting.
Although we are in a more general setting, it is similar enough for the ideas in
the proofs he gives to apply. See the proof of Theorem 4.1.36 in [21] for his treat-
ment of these results in the triangulation setting, drawing on work of Haken, Jaco,
Oertel and Tollefson, among others. The analogues of the structure he relies on
are Lemmas 4.14 and 4.15, which show respectively that performing an irregular
switch reduces the weight of a normal surface sum, and that no normal surface
has zero weight. Recall the definition of the sum of normal surfaces in split handle
structures in Procedure 4.12 and the definition of the weight of a normal surface in
Definition 4.13.

Definition A.14. Suppose that F = G1 + G2. Let γ be the collection of double
curves of G1 ∪G2. A patch of G1 ∪G2 is a component of G1 ∪G2 − γ.

Definition A.15. A surface F is minimal if it is of minimal weight in its admissible
isotopy class.

Proposition A.16. Let M be an irreducible ∂-irreducible 3-manifold and let H
be a subtetrahedral split handle structure for M . Let F be a normal surface of
minimal weight in its (admissible) isotopy class which is incompressible and ∂-
incompressible, with F = G1 + G2. Then G1 and G2 are also incompressible and
∂-incompressible, and neither G1 nor G2 is a copy of S2, RP 2 or a disc.

To set up, isotope G1 and G2 to minimise the number of components in G1∩G2

subject to the requirement that F = G1 +G2, so that G1 ∪G2 is in reduced form.
Note that as M is irreducible and ∂-irreducible, no component of F is a disc or
sphere, as then we could isotope it to the interior of a 0-handle and so, in fact,
there was no minimal normal surface representative of this surface. A disc patch is
a patch, homeomorphic to a disc, whose boundary is either a closed curve in the
interior of M , or an arc in the interior and an arc on ∂M (which we note must be
disjoint from the forbidden region).

To prove Proposition A.16, we first give a lemma that is analogous to Lemma
4.1.8 of [21].

Lemma A.17. The patches of G1 ∪ G2 are incompressible and ∂-incompressible,
and none are disc patches.

Proof. First, we show there are no disc patches. Suppose that a disc patch E did
exist, say in G1. Write s for its double curve in G1 ∪ G2, and s1 and s2 for the
corresponding trace curves in F , where s1 bounds E and s2 is the other curve. If
the boundary of this patch is one-sided in G1, then the connected component of G1
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containing E is a normal projective plane P . As M is irreducible, it is RP 3 and
P is incompressible. By Lemma 4.15 all normal surfaces in M have non-zero beam
degree. In particular, neither b(G1) nor b(G2) is zero, so b(P ) is strictly less than
b(F ) and p(P ) is at most p(F ). Now, RP 3 contains (up to isotopy) only one closed
incompressible surface that does not contain a sphere: this projective plane. Thus
F was not minimal.

Suppose that s2 does not bound a disc in F . But then taking a parallel copy of
E, bounded by s2, we get a compression or ∂-compression disc for F .

Suppose that s2 bounds a disc E′ in F that is opposite to E at the intersection
curve. If E′ does not contain E, then E ∪E′ is a sphere that (as M is irreducible)
bounds a 3-ball, so E and E′ are isotopic. We can take the irregular switch at s
instead to obtain an isotopic surface to F which by Lemma 4.14 is of lower weight
than F , so F was not minimal.

If E′ does contain E, again taking the irregular switch along s, we get, if E
was an interior disc, two surfaces F1 ∪ T . The surface F1 is homeomorphic as a
surface to F and ∂F1 = ∂F , while T is formed by taking E′\E and identifying the
boundary circles, and so is a torus or Klein bottle. As the switch was irregular, at
least one of F1 and T contains a return and hence after normalising has its weight
decreased. Let F ′ be the result of normalising F1. If the return is in F1 then the
weight of F ′ is less than that of F ; if the return is in T then the weight of T is
non-zero and so we can draw the same conclusion. As, since M is irreducible, E′ is
isotopic to a parallel copy of E, F and F ′ are isotopic and so F was not minimal.

If E intersected the boundary, we can follow a similar line of reasoning. Now
after an irregular switch we get F1∪A where A is an annulus or Möbius band. The
same reasoning however still holds.

The remaining case in which there are disc patches is when every disc patch has
an adjacent companion disc. This is the case considered in Lemma 4.1.4 of [21],
where Matveev shows the following result in the triangulation setting:

Suppose that every disc patch of G1 ∪ G2 has an adjacent companion disc E′.
Then either F can be presented as F = F1 + T where T has Euler characteristic
zero and F1 is admissibly isotopic to F and of lower weight, or there is a disc patch
E whose adjacent companion disc is also a patch of F .

We give the idea of Matveev’s proof, which also goes through in our setting. It
is to associate to G1 ∪ G2 an oriented graph, whose vertices are disc patches and
there is an edge from E1 to E2 if E2 is contained in the adjacent companion disc
E′1 of E1. As every vertex has at least one outgoing edge, this graph contains a
cycle. Resolve G1 ∪ G2 with the irregular switch at the edges of the patches in
this cycle, and the regular switch otherwise. We get a decomposition F = F1 + T
where T is the union of the pieces E′i − Ei+1. As by Lemma 4.15 T has non-zero
weight, F1 is of lower weight than F . Note that F is homeomorphic to F1 as if we
perform regular switches everywhere, then at ∂Ei we replace Ei with Ai ∪ Ei+1.
Now, Ai ∪ Ei+1 ∪ Ei is a disc or a sphere, so as M is irreducible and ∂-irreducible
they separate off balls. We can use this to construct the desired isotopy.

Now, as F is minimal, there must be some disc patch E whose adjacent compan-
ion disc E′ is also a patch. Let G′1 and G′2 be the surfaces resulting from swapping
E and E′ within G1 and G2. Now, E∪E′ is either a sphere or a properly-embedded
disc, so as M is irreducible and ∂-irreducible, we can isotope G1 to G′1 and G2 to
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G′2, reducing the number of intersections in G1 ∪ G2. Thus G1 + G2 was not in
reduced form, as we assumed.

We can therefore conclude that there are no disc patches. Suppose D is a com-
pression disc for some patch P , which we perturb to be transverse to F . Let γ be an
innermost curve of F ∩D, which, as F is incompressible, bounds a disc D′ in F . If
P ⊆ D′ then P is planar and all but one of its boundary components bound discs in
F . But then either P is a disc patch or the disc bounded by one of these boundary
components contains a disc patch. Thus D′ is disjoint from P so we can therefore
isotope D to remove all intersections with F other than its boundary. Now, ∂D
bounds a disc in F . This disc must be contained in P as otherwise some component
of ∂P bounds a disc, and so there is a disc patch. Thus P is incompressible.

Suppose that D is a ∂-compression disc for P . By the same reasoning, we can
isotope D to remove any curves of intersection with F . If α is an outermost arc of
F ∩ D other than the segment of ∂D in P , as F is ∂-incompressible, it bounds a
disc in F together with an arc in the boundary. By the same reasoning, this disc
is disjoint from P so we can isotope D to further remove these arcs. Thus D ∩ P
bounds a disc in F , which, as there are no disc patches, is contained in P . �

Proof of Proposition A.16. As any decomposition of a disc, sphere or projective
plane has a disc patch, each component of G1 and G2 has nonpositive Euler char-
acteristic. If G1 is compressible or ∂-compressible, we will construct a nontrivial
compression or ∂-compression disc D for G1 that is disjoint from G2. Let the weight
of a compressing disc D for G1 be w(D) = |D ∩G2|+ |∂D ∩ (G2\\∂M |. The idea
is to give moves to reduce this weight.
Claim 1: Suppose that G1 has a nontrivial compression or ∂-compression disc D,
which we can assume is transverse to G2. If D ∩G2 contains a closed curve or an
arc with both endpoints in ∂M , then there is a compression or ∂-compression disc
D′ for G1, of lower weight, that does not contain such intersections with G2.

The triangulation setting analogue of this claim is shown in the first part of
Lemma 4.1.35 of [21]. We sketch the idea of the proof, which does not in fact depend
on its setting. Take an innermost such curve or outermost such arc, bounding a
disc ∆ in D such that ∆ ∩ G2 = ∂∆ or ∆ ∩ G2 is a single arc. As ∂∆ ∩ G2 is
connected, it is contained in a single patch of G2. Now, as the patches of G1 ∪G2

are incompressible and ∂-incompressible and M is irreducible and ∂-irreducible,
there is a disc in this patch of G2 isotopic to ∆. We can replace ∆ in D with this
disc to remove this intersection with G2 and reduce the weight of D.

Let D be a nontrivial compression or ∂-compression disc for G1 that intersects
G2 minimally. By the claim, D intersects G2 only in arcs that have at least one
endpoint away from ∂M . Let ∆ be a region of D cut out by D ∩ G2. Then ∆
is a (∂)-compressing disc for the polyhedron G1 ∪ G2, as it is transverse to the
singular subcomplex of G1 ∪ G2 and D ∩ ∂M is connected. Following [21, §4.1.6],
label the vertices of ∆ as “good” or “bad” angles according to whether, in F , the
patches forming the two edges are pasted together or not respectively. Note that if
all angles of ∆ are good, then ∆ is a compression disc for F .

The following claim is Lemma 4.1.33 of [21], and his proof goes through in our
setting.
Claim 2: Suppose that ∆ has exactly one bad angle. Then F is not minimal.

The idea of the proof is to consider the component l of G1 ∩ G2 that passes
through this bad angle. Let A be the annulus or quadrilateral joining the two
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copies of l in F . One can build a (∂-)compressing disc for F from, if l is a closed
curve, two copies of ∆ and one of the components of A−∆, or if l is an arc, ∆ and
a component of A−∆. Now as F is incompressible and ∂-incompressible and M is
irreducible and ∂-irreducible, this disc bounds a ball with a disc of F and possibly
a disc in ∂M . We can use this to isotope F through a region it bounds with A to
a surface of lower weight.

By this claim, each region has either no bad angles or at least two bad angles.
Now, each arc in D ∩G2 contributes one bad angle for each endpoint it has that is
not on ∂M . Let m be the number of arcs that have no endpoints on ∂M , and n
be the number with one endpoint on ∂M . There are m+ n+ 1 regions in D, and
2m+ n bad angles. Thus, by the pigeonhole principle, there is a region ∆ with at
most one bad angle, which hence has no bad angles.

This region is a compression or ∂-compression disc for F itself, which is incom-
pressible and ∂-incompressible, so ∆∩F bounds a disc ∆′ in F . We sketch the ideas
of Lemma 4.1.34 of [21], which deals with this situation. First, ∆′ is decomposed
by the trace curves into smaller regions. As there are no disc patches, none of these
trace curves are closed curves or are arcs with both endpoints on ∂M . Thus, taking
an outermost trace curve, there is a region ∆′0 of ∆′ whose boundary is one trace
curve segment, one segment of ∆ ∩ F , and possibly one segment from ∂M .

Now, as shown in Lemma 4.1.35 of [21], if this region is in G1, so ∂∆′0 = ∆′0 ∩
(G2 ∪∆ ∪ ∂M), then as M is irreducible we can isotope D through ∆′0 to remove
an arc of intersection with G2. If this region is in G2, then compress ∆ along
∆′0, removing an intersection. At least one of the resulting discs is essential and
gives a non-trivial compression or ∂-compression disc. Either of these reduces the
weight of ∆. Continuing this procedure, we eventually get a non-trivial compression
or ∂-compression disc for G1 that is disjoint from G2. But then its boundary is
contained in a patch of G1, which is incompressible and ∂-incompressible, so this
is a contradiction. �
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